
Mike Phillip 8/17/98 1

A Second Generation SIMD

Microprocessor Architecture

Mike Phillip
Motorola, Inc.

Austin, TX

phillip@ncct.sps.mot.com

Mike Phillip 8/17/98 2

Why SIMD ?Why SIMD ?

¥ ÒBut isnÕt that really old technology ?Ó

Ð Yes, architecturally speaking, but...

Ð SIMD within registers provides ÒcheapÓ interelement

communictaions that wasnÕt present in prior SIMD systems

¥ Provides a reasonable tradeoff between increased

computational bandwidth and manageable complexity

Ð Fewer register ports needed per Òunit of useful workÓ

Ð Naturally takes advantage of stream-oriented parallelism

¥ Can be easily scaled for various price/performance points

¥ Can be applied in addition to traditional techniques

Mike Phillip 8/17/98 3

Some AlternativesSome Alternatives

¥ Wider superscalar machines
Benefits: High degree of flexibility; easy to program

Problems: Complex implementations; higher power consumption

¥ Special purpose DSP and Media architectures
Benefits: Low power; efficient use of silicon

Problems: Traditional design approaches tend to limit CPU speeds;

 lack of generality; lack of development tools

¥ VLIW
Benefits: Reduced implementation complexity; impresses your friends

Problems: Need VERY long words to provide sufficient scalability;

 limited to compile-time visibility of parallelism;

 difficult to program

Mike Phillip 8/17/98 4

The First GenerationThe First Generation
¥ First generation implementations tend to overlay SIMD

instructions on existing architectural space

Ð Permitted quick time to market, but limits scalability

Ð Intel, Cyrix, AMD (MMX), SPARC (VIS) are fairly complete

Ð PA-RISC (MAX), Alpha (MVI) offer limited graphics

acceleration instructions only

¥ Programming models are weak or non-existent

Ð Most code to date written in assembly language

Ð Language extensions and compilers just now appearing

¥ Little support for control flow & memory management

Nonetheless, significant speed-ups seen for multimedia applicationsNonetheless, significant speed-ups seen for multimedia applications

Mike Phillip 8/17/98 5

ÒWouldnÕt It Be Nice...ÓÒWouldnÕt It Be Nice...Ó

How might next generation Ògeneral purposeÓ

SIMD be improved ?

¥ Independent register file and name space

¥ More parallelism

¥ More DSP-like capabilities

¥ More ÒneighborÓ operations (inter vs. intra - element)

¥ Orthogonal element data types (including FP)

¥ Better control of memory hierarchy

¥ Better SIMD control flow capability

¥ Better programming model

Mike Phillip 8/17/98 6

AltiVec OverviewAltiVec Overview

128 bits

MemoryMemory

UnitUnit
DispatchDispatch

data data datainst inst data

instructions

addr addr

Floating PtFloating PtIntegerInteger
UnitsUnits UnitsUnits

GPRsGPRs FPRsFPRs VRs

VectorVector
UnitsUnits

64 bits32 bits

AltiVec is:

¥ First significant extension

 to PowerPC architecture

¥ High performance, scalable

 SIMD architecture

¥ 162 new instructions

¥ 32 new registers (128 bits each)

¥ 4 new integrated vector units

¥ Programmable from C and C++

AltiVec is not:

¥ An execution mode

¥ An on-chip coprocessor

¥ A hardware accelerator

¥ A Digital Signal Processor

Mike Phillip 8/17/98 7

AltiVec: The BasicsAltiVec: The Basics

¥ Simplified architecture

Ð No interrupts other than data storage interrupt on loads and stores

Ð No hardware unaligned access support

Ð No complex functions

Ð Streamline the architecture to facilitate efficient implementation

¥ 4-operand, non-destructive instructions

Ð Supports advanced Òmultiply-add/sumÓ and permute primitives

¥ Includes key ÒneighborÓ operations, SIMD control flow,

data management and DSP-like capabilities

Ð Enables use in networking and communications markets

¥ True superset of MMX functionality

Ð Delivers 2-4x performance for desktop multimedia applications

Ð Twice the parallelism, four to eight times the register bandwidth

Mike Phillip 8/17/98 8

AltiVec Data TypesAltiVec Data Types

16 16 signedsigned or or unsignedunsigned integer bytes integer bytes

8 8 signedsigned or or unsignedunsigned integer halfwords integer halfwords

4 4 signedsigned or or unsignedunsigned integer words or integer words or
4 IEEE 4 IEEE single-precisionsingle-precision floating-point numbers floating-point numbers

One Vector (128 bits)One Vector (128 bits)

16 bits16 bits

8 bits8 bits

32 bits32 bits

Mike Phillip 8/17/98 9

Algorithmic FeaturesAlgorithmic Features

¥ Intra-element Instructions

Ð Integer and Floating Point arithmetic

Ð Memory access instructions

Ð Rotate, Shift and Logical instructions; Min and Max instructions

¥ Inter-element Instructions

Ð Permute, multi-register shifts, address alignment

Ð Integer Multiply Odd/Even, Multiply-Add, Multiply-Sum

Ð Integer Sum Across

¥ Control flow

Ð Compare creates field mask used by select function

Ð Compare Rc bit enables setting Condition Register

¥ Trivial accept/reject in 3D graphics

¥ Exception detection via software polling

Mike Phillip 8/17/98 10

Intra-element InstructionsIntra-element Instructions

VB

VT

VA

VC

op op op op op op op op op op op op op op op op

VB

VT

VA

VC

op op op op op op op op

VB
VA

VC

op op op op

VT

¥ Integer arithmetic

¥ FP arithmetic

¥ Memory access

¥ Conditional

¥ Logical

¥ Shift, Rotate

¥ Min, Max

¥ Saturation options

16 x 8-bit elements

8 x 16-bit elements

4 x 32-bit elements

Operations include:

Mike Phillip 8/17/98 11

Vector Dot Product (FIR)Vector Dot Product (FIR)
v
m

s
u
m X X X X

S

S

S S S

X X X X X X X X X X X X

v
s
u
m

 PowerPC: PowerPC:
 36 instructions

 (18 cycles throughput)

 AltiVec:AltiVec:
 2 instructions2 instructions
 (2 cycles throughput)

Mike Phillip 8/17/98 12

Vector Compare and SelectVector Compare and Select

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

C1 00 00 00 1A 1A C1 1A 00 C1 00 00 1A 00 1A C1

00 FF FF FF 00 00 00 00 FF 00 FF FF 00 FF 00 00

9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A

C1 9A 9A 9A 1A 1A C1 1A 9A C1 9A 9A 1A 9A 1A C1

C1 00 00 00 1A 1A C1 1A 00 C1 00 00 1A 00 1A C1

= = = = = = = = = = = = = = = =

v
s
e
l

v
c
m

p

 PowerPC: PowerPC:
 48 instructions

 (32 cycles throughput)

 AltiVec:AltiVec:
 2 instructions2 instructions
 (2 cycles throughput)

Mike Phillip 8/17/98 13

Data Management FeaturesData Management Features

¥ Simplified load/store architecture

Ð Simple byte, halfword, word and quadword loads & stores

Ð No unaligned accesses; software-managed via permute instruction

¥ Data stream prefetch and stop instructions

Ð Enables reuse of data cache as a memory access buffer

Ð Alleviates memory access latency by enabling early data prefetch

¥ Load & store with LRU and ÒtransientÓ hints

Ð Marks loaded cache block Ònext to be replacedÓ

Ð Avoids flushing cache with multimedia data exhibiting limited reuse

Ð ÒSoftware-managedÓ memory buffer in cache

¥ Permute unit

Ð Full bytewise crossbar

Ð Accelerates bit interleaving, table lookups, very long shifts

Mike Phillip 8/17/98 14

Data Stream PrefetchData Stream Prefetch

1 2 3 N Memory

Block Size (0 - 32 Vectors)

Stride (± 32 KBytes)

0 - 256 Blocks

 PowerPC: PowerPC:
 Does not exist

 AltiVec:AltiVec:
 1 instruction1 instruction

 (Can save hundreds

 of clocks)

1 2 3 N Memory
1 2 3 N Memory

1 2 3 N Memory
1 2 3 N Memory

Four independent

streams

Mike Phillip 8/17/98 15

Vector PermuteVector Permute

17 18 D E F 1E 1 0 12 11 10 A 14 14 14 14

Control Vector

Input Vectors

Output Vector

 PowerPC: PowerPC:
 5-50 instructions

 (Depending on

 application)

 AltiVec:AltiVec:
 1 instructions1 instructions

 (1 cycle throughput)

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

Mike Phillip 8/17/98 16

Programming SIMDProgramming SIMD

Four options for programming SIMD extensions:Four options for programming SIMD extensions:

1. Assembly language
¥ Requires minimal tools support, but difficult to maintain/port

2. Libraries and APIs
¥ Very useful, but canÕt provide complete coverage; required for Java

3. ÒSynthesizeÓ SIMD code from standard compiled C/C++

¥ Many SIMD instructions have no mapping to C or C++

¥ Leads to poor performance; tends to mislead developers

4. Offer programming model to access SIMD from C / C++
¥¥ Permits developers to more directly express intended algorithmPermits developers to more directly express intended algorithm

¥¥ Can match or exceed assembly language in performanceCan match or exceed assembly language in performance

Mike Phillip 8/17/98 17

AltiVec Programming ModelAltiVec Programming Model

1. Introduce new C and C++ data type:

 vector unsigned short a, b, c;

 vector float *x, *y, z;

2. Introduce intrinsic operators, with type overloading

c = vec_add(a,b); // for i=0..7, ci = ai + bi
z = vec_add(*x,*y); // for i=0..3, zi = (*x)i + (*y)i

Compiler selects appropriate instruction, handles register

allocation, instruction scheduling, inlining, loop optimizations, etc.

Programmer can focus on algorithm, while still retaining benefits

of integrated development environments

Mike Phillip 8/17/98 18

Application: FIR FiltersApplication: FIR Filters

y0 = c0x0 + c1x-1 + c2x-2 + c3x-3 + c4x-4 + c5x-5+ c6x-6 + c7x-7

y1 = c0x1 + c1x0 + c2x-1 + c3x-2 + c4x-3 + c5x-4+ c6x-5 + c7x-6

y2 = c0x2 + c1x1 + c2x0 + c3x-1 + c4x-2 + c5x-3+ c6x-4 + c7x-5

y3 = c0x3 + c1x2 + c2x1 + c3x0 + c4x-1 + c5x-2+ c6x-3 + c7x-4

yi = cj xi-jS
j = 0

K-1

ÒObviousÓ approach:ÒObviousÓ approach:
¥ Compute results horizontally

¥ Advantages: Simple to design, scalable, little register pressure

¥ Drawbacks: Results need to be interleaved,

 Òsum acrossÓ reductions needed for large filters

Typical performance: 1999 cycles (64 taps, 128 outputs)

Mike Phillip 8/17/98 19

FIR Example, continuedFIR Example, continued

Typical performance: 1566 cycles (64 taps, 128 outputs)

 (23 % improvement)

A better approach for AltiVec:A better approach for AltiVec:

¥ Compute results using vertical ÒtilesÓ

¥ Advantages: Results already in place, no Òsum acrossÓ

¥ Drawbacks: : More complex design, more register pressure

c0x0 + c1x-1

c0x1 + c1x0

c0x2 + c1x1

c0x3 + c1x2

c2x-2 + c3x-3

c2x-1 + c3x-2

c2x0 + c3x-1

c2x1 + c3x0

c4x-4 + c5x-5

c4x-3 + c5x-4

c4x-2 + c5x-3

c4x-1 + c5x-2

c6x-6 + c7x-7

c6x-5 + c7x-6

c6x-4 + c7x-5

c6x-3 + c7x-4

+

+

+

+

+

+

+

+

+

+

+

+

y0 =

y1 =

y2 =

y3 =

Mike Phillip 8/17/98 20

Application: 3x3 Median FilterApplication: 3x3 Median Filter

9 6 2

2 8 4

7 1 3

2 1 2

7 6 3

9 8 4

1 2 2

3 6 7

4 8 9

9 6 2 5 9 89 6 2 5 9 8

2 8 4 1 4 12 8 4 1 4 1

7 1 3 6 0 57 1 3 6 0 5

1. Sort columns 2. Sort rows 3. Median of diagonal

Load nine vectors (16 elements each)

Problem: Traditional scalar

algorithms contain control flow

Solution: Find a SIMD algorithm

Typical AltiVec Performance:

 1.06 cycles / median (pixel)

Mike Phillip 8/17/98 21

PerformancePerformance
 The following potential AltiVec applications have all

demonstrated Òorder of magnitudeÓ speedups relative to

existing scalar implementations:

¥ Complex FFT

¥ FIR filters

¥ Convolutional encoders / Viterbi decoders

¥ Videoconferencing

¥ Voice over IP (VoIP)

¥ Echo cancellation

¥ Encryption/key generation

¥ MPEG-2 Encode

¥ Image processing (median filters, etc.)

¥ Multi-channel modems

Mike Phillip 8/17/98 22

SummarySummary
¥ Second generation SIMD architectures will address many

shortfalls of current generation

¥ AltiVec has been demonstrated to be applicable to a broad

range of desktop and embedded applications

Ð Convergence in marketplace of traditional DSP and general purpose
approaches => $/channel, MIPS/watt are the relevant metrics

Ð Microprocessor complexity needs to grow at slower rate than
demand for performance

Ð SIMD is not a standalone answer, but is a scalable architectural
component

¥ SIMD requires special treatment in software

Ð Different algorithms required, but payoff is significant

Ð Conventional languages do not adequately represent SIMD or DSP
semantics

Ð AltiVec offers standardized programming model for C and C++

