
Accelerating Cryptography
in Hardware

• Public Key

• Random Number Generation

• Symmetric Key

Mark Birman
Hi/fn, www.hifn.com
2105 Hamilton Ave, Suite 230
San Jose, CA 95125
August, 1998

2

• Overview
– Why Security?

– Security Boundaries in Networking

– Typical Hardware System

• Public Key
– Technology

– Computational Requirements

– Math Properties

– Math Example

– Accelerator Block Diagram

– Instruction Format

– Instruction Set

– Public Key Engine Block Diagram

– Public Key Engine Operation

– Alternate Public Key Engine

Outline

• Random Number Generation
– Overview

– Block Diagram

– Operation

• Symmetric Key
– Algorithms

– Accelerator Block Diagram

– Glossary of Abbreviations

– Accelerator Operation

• Protocols Supported by Hi/fn
Hardware

• Summary

3

Why security?

• Everybody is getting connected without regard to physical/wiring locality:
WAN or LAN; being “neighbors” on the same physical wire, however, is not
secure

• Deregulation of the connectivity infrastructure and proliferation of Internet
attracts business (vs. using dedicated leased lines), as long as information can
be exchanged securely

• On-line “shopping” requires confidentiality of payment/account information
and order information, as well as reliable authentication of the parties
involved in a transaction.

• Recent standards’ work supporting security deployment
– Internet Engineering Task Force: IPSEC (IP Security), IPPCP (IP Payload

Compression Protocol); support for key exchange, encryption, authentication, and
compression

– SETCo: SETTM (Secure Electronic Transaction) standard; SETCo is started by
VISA and MasterCard

4

• Properties of WAN links:
– point-to-point stateful protocols

– not as fast as LAN for majority of
connections

– security is essential due to
connectivity via Internet

– compression is widely deployed

• Properties of LAN connections:
– stateless protocols

– mostly IP

– approaching Gbits/sec

– locality is assumed to be more private,
so security is not widely deployed yet

– compression is not deployed yet

Security Boundaries in Networking

user

user

user

Router,
Firewall

ISP

Internet

LAN

ISP user

ISP user

Possible security boundaries

1 2 3

Need to compress before encrypting, since
encrypted data does not compress at all!

5

System parameters:
– All-in-one vs. separate public key and symmetric

key silicon/performance scalability

– DMA capabilities and bus bandwidth

– Dedicated vs. shared RAM

CPU System
Controller

System
DRAM

Public
Key

Symmetric
Key

LAN WAN

Local
DRAM

Ethernet Wire or
wireless

Typical Hardware System

6

Public Key Technology

Key
generation

Public Key
Engine

Public Key
Engine

Some
message,
e.g.
Encrypted
Session Key

Session
Key

Public Key Private Key

Sender Receiver

Public Key
Engine

Public Key
Engine

Private Key Public Key

Sign Verify

• Asymmetric: computationally easy to encrypt but hard to decrypt; hard to
sign but easy to verify the signature

• Key management and trusted certification authority infrastructure problems
are complex

7

Public Key Computational Requirements

• Modular arithmetic on 1024-bit or larger (e.g. 2048-bit) integers, with
the most time consuming operation being:

– rd = rare mod rm, where rd, ra, re, rm are 1024-bit numbers

• 100,000’s cycles to compute a private key operation, e.g.

– 1024-bit and 2048-bit private key RSA operations:

• 400MHz PentiumII: ~25 msec (40/sec; 2048-bit: 5/sec)

• 100MHz Hi/fn: 5 msec (200/sec; 2048-bit: 50/sec)

• “Monday morning” phenomenon (everybody calls in on Monday
morning) requires 100’s computations/sec even for a fairly small
communication concentrator, like several 1.5Mbit/sec T1 lines.

• Secure Electronic Transaction servers and higher bandwidth
communication concentrators require 1000’s computations/sec.

8

Public Key Math Properties

• Modular arithmetic:
– (a * b) mod n = (a mod n) * (b mod n) mod n

– (a + b) mod n = (a mod n) + (b mod n) mod n

– ab mod n can be decomposed into a number of modular multiplies

• Generating primes (testing for primality) and then multiplying them to
form a large number is “easy”, but factoring a number is “hard”

• Computing (ab mod n) is “easy”, but finding a discrete logarithm is
“hard”

• “Hard” means a O(cf(n)), where f(n) is greater than a constant, but
less than linear

9

Public Key Math Example (Diffie-Hellman
Key Exchange)

• n and g are large known primes
• n and g are publicly known

Alice Bob

• Choose large random x
• A = g x mod n

• k = Bx mod n = gxy mod n
• k is a “secret”

• Choose large random y
• B = gy mod n
• k = Ay mod n = gxy mod n
• k is a “secret”

A,B

• only A and B are transmitted
• public knowledge of A and B does not help in determining the secret
key, since x and y require computing discrete logarithm

10

Public Key Accelerator

1024-bit
Public Key

Engine

Instruction
Store

32-deep

PCI/Hi-Bus Bus Interface

System Bus

Random Number
generator

Random Number
FIFO

16x32-bits

32

16 / 32

1024102432

1024 1024 10241024

Register File, 16x1024 bits
rd ra rmrb

11-bit
Length
Tags

3.3V, >100MHz, 0.35um, <1.5Watt

11

do
ne

1

31

op

2630

5

rd

2125

5

ra

1620

5

rb

1115

5

rm

610

5

reserved

05

6

Bit Field Description

Done
Indicates the end of the microprogram. This bit is set on the last instruction of the
program. The microprogram terminates after the instruction is executed.

Op Instruction opcode.

ra Register number containing operand A.

rb Register number containing operand B.

rd Register number in which to write result

rm Register number containing modulus.

Reserved Reserved. This field must be written as 0b000000.

Public Key Accelerator Instruction Format

12

Public Key Accelerator Instruction Set

Name Opcode Function Mnemonic
Modular Exponentiation 0x00 rd = rare mod rm modexp rd ra re rm
Modular Multiplication 0x01 rd = (ra x rb) mod rm modmult rd ra rb rm
Modular Reduction 0x02 rd = ra mod rm modred rd ra rm
Modular Addition 0x03 rd = (ra + rb) mod rm modadd rd ra rb rm
Modular Subtraction 0x04 rd = (ra – rb) mod rm modsub rd ra rb rm
Addition 0x05 c,rd = ra + rb add rd ra rb
Subtraction 0x06 c,rd = ra – rb sub rd ra rb
Addition with carry 0x07 c,rd = ra + rb + c addc rd ra rb
Subtraction with borrow 0x08 c,rd = ra – rb – c subb rd ra rb
Straight Multiplication 0x09 ru,rl = ra x rb mult ru rl ra rb
Shift Right 0x0A rd = ra >> len shr rd ra len
Shift Left 0x0B rd = ra << len shl rd ra len
Increment 0x0C c,rd = ra + 1 inc rd ra
Decrement 0x0D c,rd = ra – 1 dec rd ra
Set Length Tag 0x0E rd:tag = len settag rd len

13

1024-bit Public Key Engine

modulus multiplicand multiplier

Booth recodePredict table +/- 0,1x,…,10x +/- 0,1x,2x

carry sum

carry-save adder (CSA)

binary adder

One
iteration

~600 iterations
per modular
multiply

Final conversion
to binary

14

1024-bit Public Key Engine Operation

• 2-bit per cycle Booth multiplication

• 2-bit per cycle modular reduction (similar to iterative division)

• Both multiplication and reduction steps happen simultaneously, so
Carry and Sum registers serve as a redundant representation of both
partial product and partial remainder

• In one iteration:
– Use Booth algorithm to choose +/-0,1,2 times multiplicand to be added to

the partial product on the next cycle

– Predict, based on the upper bits of the modulus and the upper bits of the
partial remainder, +/-0,1,…,10 times modulus to be subtracted from the
partial remainder on the next cycle

– Simultaneously add multiplicand multiple to and subtract modulus
multiple from the partial product/remainder

• In the end:
– convert to binary

• Exponentiation consists of a series of multiplies

15

• More flexible
• Less scalable
• Harder to use
• Performance depends on the size and speed of the multiplier, so slower
• Comparable or larger area, depending on the multiplier and the CPU
• Montgomery multiplication algorithm, rather than iterative methods

Alternate Public Key Engine Architecture
(not implemented)

Embedded
CPU

Program/Data
RAM/ROM

Dedicated
Multiplier

16

Random Number Generation

• Random numbers are needed for key generation, for both public key
and symmetric key algorithms

• There is no reliable way to generate randomness without hardware

• Randomness can be generated via a noise source of some kind

• Enough randomness has to be collected over a period of time to
produce truly random numbers

• One-way hash functions are used to “collect” randomness (one-way
means that it’s computationally not feasible to find an inverse)

• Random number generator performance has to match public key
hardware performance

• Random keying material needs to be stored securely

Source of
randomness

Randomness
collector/bucket

Fifo/buffer for
random numbers

SoftwareHardware

17

Random Number Generator

31-bit LFSR

127-bit LFSR

32-bit LFSR

in
enable

in
enable

in
enable

prescaler

prescaler

Source of
randomness

OUTPUT FIFO

clock

LFSR: linear feedback shift register

18

Random Number Generator Operation

• Use “relatively prime” asynchronous oscillators as a source of randomness; the
oscillators are not in any way related to processor clock

• XOR outputs of the oscillators together and synchronize the output: this
becomes the input to the 31-bit LFSR; this LFSR is clocked on each clock

• 31-bit LFSR is “holding” randomness from the oscillators

• Every so often (between 2 to 16K cycles), shift in the output from the 31-bit
LFSR to the 127-bit LFSR

• Every other clock, and if the least significant bit of the 127-bit LFSR is set, shift
in bit-1 of the 127-bit LFSR into the 32-bit output LFSR

• Every so often (between 512 and 1024 cycles) output LFSR is placed into the
output FIFO: a new random number is ready

• LFSR lengths, polynomials, and prescaler time delays are selected so that it’s
computationally infeasible to find any correlation between numbers

• Once the initial 31-bits of randomness is collected, the circuit would work even
if no more randomness is supplied

19

Symmetric Key Algorithms

• Fast in hardware: approaching Gbit speeds!

• Symmetric: same key used by sender and receiver

• Hard to use on its own in communications since may not be able to
“share a common secret” in advance of communication

• Need public key algorithms to exchange the secret key (slow…); then
use symmetric key encryption for the ”payload” (fast!!!)

• Every byte of payload is processed, so it’s convenient to pipeline with
other payload processing: compression and authentication

• 3*DES (Triple Data Encryption Standard) is slow in software:
400MHz PentiumII: ~25Mbit/sec; 100MHz Hi/fn: 250Mbit/sec

Symmetric
Encryption

Clear
data

Encrypted
data

Symmetric
Decryption

Sender ReceiverSecret
Key

Com-
press

Decom-
press

20

Symmetric Key Accelerator

• Flexible pipeline ordering

• WAN: T3 (90Mbits/sec), 64-byte packets, stateful, multi-protocol

• LAN: > 200Mbit/sec, 64-byte packets, stateless, single protocol

• If compression cannot compress, pass the data unchanged

• 3.3V, >100MHz, 0.35um, <1.5W

input
fifo

output
fifo

Comp-
ression:
LZS
MPPC

Authen-
tication:
SHA-1
MD5

Encryp-
tion:
3*DES
RC4

External
DRAM

command/result/context unit

21

Glossary of Abbreviations

• Compression
– LZS: Lempel-Ziv-Stac Compression, patented by Hi/fn; hardware-

friendly Lempel-Ziv type of compression

– MPPC: Microsoft Point-to-Point Compression; based on Hi/fn
technology; similar to LZS but with a different encoding format

• Authentication
– MD5: Message Digest; one-way hashing function

– SHA-1: Secure Hashing Algorithm; one-way hashing function

• Symmetric Encryption
– DES: US Government Data Encryption Standard; a block-cipher

algorithm

– 3*DES (Triple-DES): DES repeated 3 times (stronger encryption)

– RC4: Rivest Cipher; stream-cipher; designed by Ron Rivest for RSA
Data Security, Inc. Used in Microsoft products

22

Symmetric Key Accelerator Operation

• Scatter-gather DMA mastering circuit brings in IP packets from system
memory and feeds them into the source FIFO

• Each block of the pipeline skips over appropriate header and trailer bytes

• Each block then applies the appropriate algorithm to the payload of the
packet, as the payload bytes move through the pipeline

• Scatter-gather DMA mastering circuit places processed packets into system
memory

• Each packet of the same communication session is identified by a unique
session number, so all packet parameters (e.g. which algorithm to use,
header/trailer byte counts, and so on) are selected automatically by the chip

• Stages in the pipeline are automatically reordered based on the algorithm
applied to the packet. For example, compression would precede encryption
for encoding (transmitting). The opposite for decoding (receiving).

• Dedicated local DRAM is used for keeping packet information and
compression and encryption contexts for each session

23

• IP Security (IPSEC)

• Point-to-point compression (PPP/CCP)

• Point-to-point tunneling (L2TP/PPTP)

• Secure Socket Layer (SSL/TLS)

• Secure Electronic Transaction (SET)

• Certificate Services (PKIX)

Protocols Supported by Hi/fn Hardware

24

Summary

• Security is a must for private communications over public media and
for digital commerce

• Dedicated hardware processing is a must for security implementations
to be practical in terms of speed

• Advances in silicon make wide security deployment practical in terms
of cost

• Compress before encrypting in order to preserve currently deployed
WAN bandwidth that is already relying on compression

