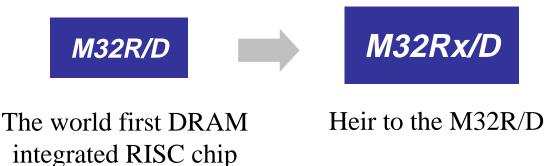
M32Rx/D - A Single Chip Microcontroller with A High Capacity 4MB Internal DRAM

Toru Shimizu

Mitsubishi Electric Corporation System LSI Division 4-1 Mizuhara. Itami. Hyogo. 664 Japan

MITSUBISHI ELECTRIC CORPORATION


Overview

- Highlights
- M32Rx Architecture
 - M32Rx ISA, and Micro-Architecture
- Embedded RAM (eRAM) Technology
 - Fusion of a 32-bit RISC and a High Capacity DRAM
 - High bandwidth can be achieved by wide internal bus
- Summary

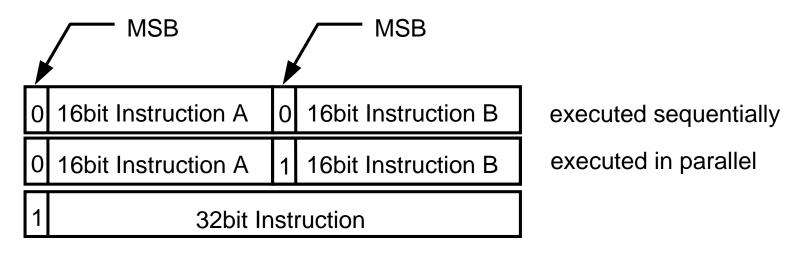
M32Rx Highlights

• A high capacity (4MBytes) DRAM is integrated with a 32-bit RISC core

- A dual-issue pipeline is implemented
- Fast data transfer to and from the external bus can be achieved using the wide (128bit) internal bus

M32Rx Features

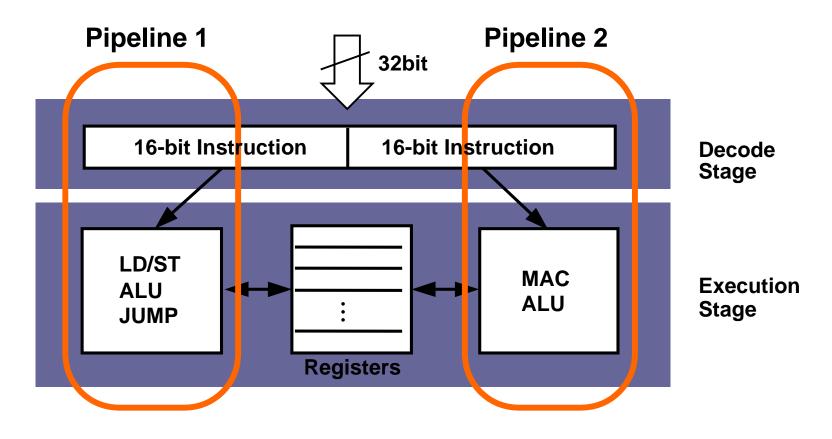
- Simple 32-bit core coupled to a high capacity DRAM
 - Overcomes the memory access bottleneck in execution
 - Low power dissipation due to main memory integration
- Good performance for embedded systems
 - Target applications
 - Multimedia applications: Image compression, Audio, Speech recognition, Voice compression, etc.
 - Communications: Decode/Encode, Networking, Modem, etc.
 - Target Systems
 - Digital cameras, Internet terminals, Telephone, PDAs, etc.



M32Rx Architecture

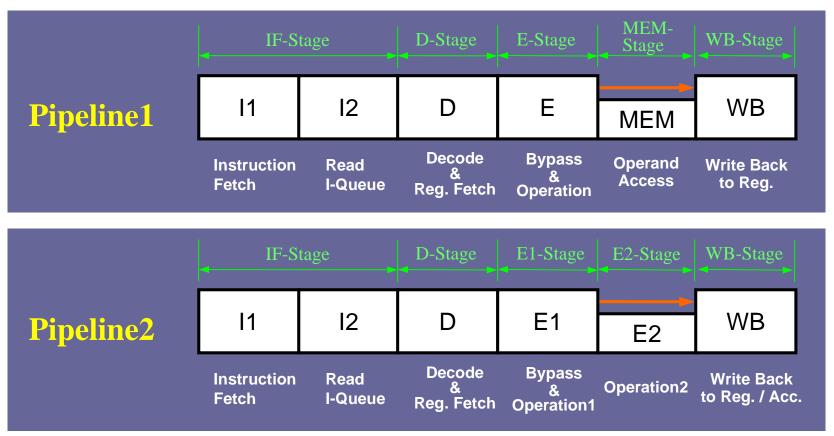
- M32Rx ISA (Instruction Set Architecture)
 - M32R ISA Upwards Compatible
 - 32-bit x 16 General Purpose Registers
 - 56-bit x 2 Accumulators utilized by DSP function instructions for multimedia applications
 - Variable Length Code Format: 32-bit / 16-bit
 - Two 16-bit instructions can be executed in parallel
 - High code efficiency due to 16-bit instructions
- Pipeline Structure
 - Dual-Issue, 6-Stage Pipeline
 - In-Order Issue, Out-of-Order Completion

M32Rx ISA (Instruction Set Architecture)


- M32R ISA Upwards Compatible
 - Total 95 instructions = M32R compatible 83 instrs.
 - + 12 additional instrs. (including 5 additional DSP function instrs.)
- Variable Length Code Format: 32-bit / 16-bit
 - Two 16-bit instructions can be executed in parallel

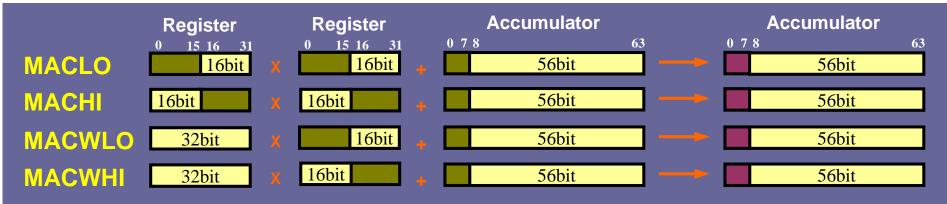
M32Rx Pipelines

• Dual issue implemented by using two pipelines

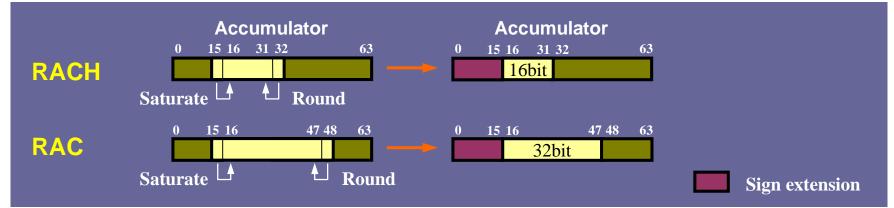

Instruction Issuing

- Available instruction categories for each pipeline
 - Arithmetical/Logical operations can be executed in both pipelines
 - Load/Store and Jump/Branch operations can be executed only in Pipeline1
 - Multiply and Accumulate operations can be executed only in Pipeline2

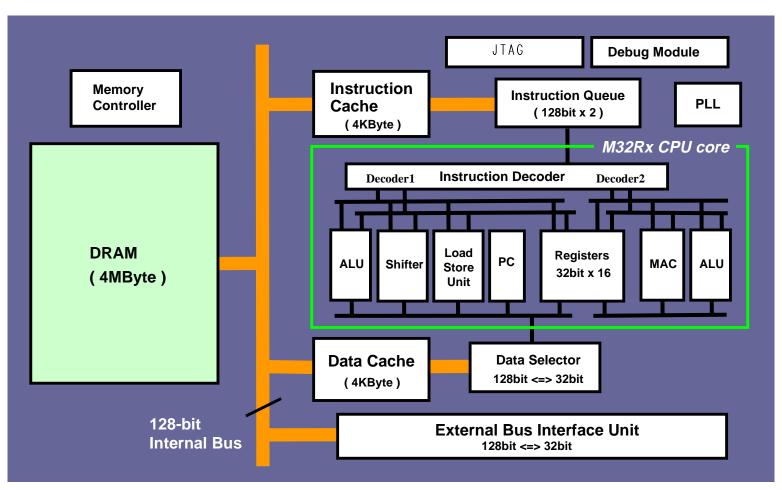
Operation	Pipeline1	Pipeline2
Arithmetic Op.	Ο	Ο
Logical Op.	Ο	Ο
Load/Store Op.	Ο	Х
Jump/Branch Op.	Ο	Х
Multiply and Accumulate Op.	Х	О


Pipeline Structure

• Two 6-Stage Pipelines



DSP Function Instructions


• Multiple and Accumulate Instructions

• Rounding Instructions

M32Rx Block Diagram

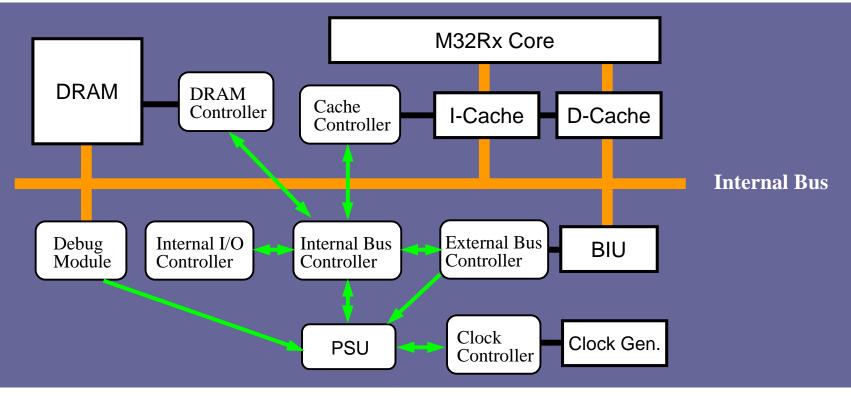
MITSUBISHI ELECTRIC CORPORATION

eRAM: Embedded RAM Technology

- Logic and memory are integrated in one chip
 - Logic : CPU, ALUs, Multipliers, En/Decoders, etc.
 - Memory : DRAMs, SRAMs, Flash-ROMs, etc.
- High bandwidth can be achieved by connection via wide internal buses
- Total system performance can be increased
 - High performance
 - Low power consumption
 - Small package footprint on PCB

High Performance Memory System

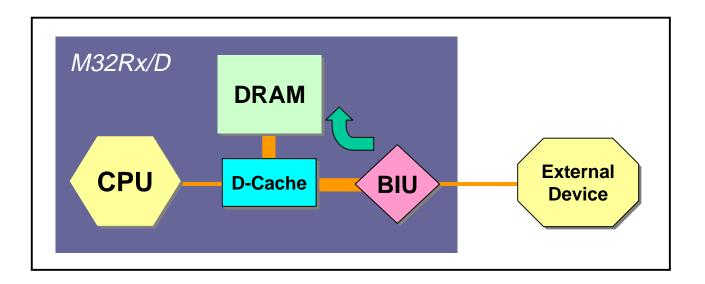
- Cache SRAM and Internal DRAM are interconnected by a 128-bit Internal Bus
 - High Bandwidth : 1.5GByte/s @ 100MHz
 - High speed cache-line replacement


Applied to embedded systems

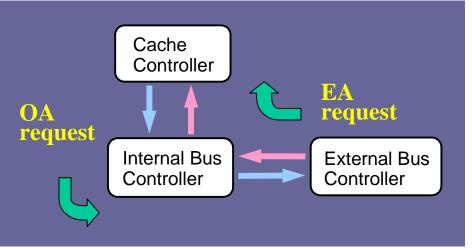
- Very good cost/performance memory system
 - Simple Cache can be employed due to high speed internal DRAM
 - Cache can be simplified to realize the same processing performance
 - Large and complex cache is expensive
 - Power dissipation is reduced

Internal Bus Organization

• Modular design methodology has been employed



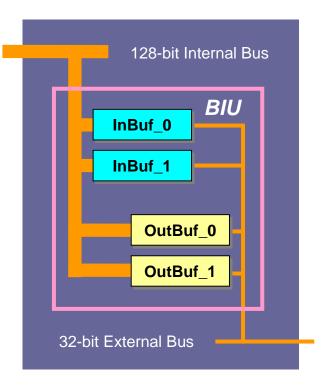
PSU: Power Saving Unit


External Bus-Master Access

- M32Rx/D chip can be accessed like a memory chip
 - Fast external bus-master accesses can be executed using the wide internal bus
 - CPU operations are almost undisturbed by external accesses

External Bus-Master Access (Cont.)

- Internal bus arbitration
 - An Operand Access (OA) request and an External Bus-Master Access (EA) request may happen at the same time
 - EA requests take priority over OA requests
 - To avoid dead-locks, D-cache can accept EA requests during miss operations as well
- To keep data coherency :
 - Data must be accessed through the D-Cache
 - Only data in the internal DRAM space is cacheable


Cache Memories

- Single cycle read, two cycle write
- Instruction Cache: 4KByte, Data Cache: 4KByte
 - Direct-mapped, separate I and D caches
 - Data cache is a write-back cache
- D-Cache is accessed during external bus-master accesses to internal DRAM so as to keep data coherency
- Data Buffers
 - D-Cache has *Write* and *Read Buffers* to enhance write and write-back performance

BIU and Buffers

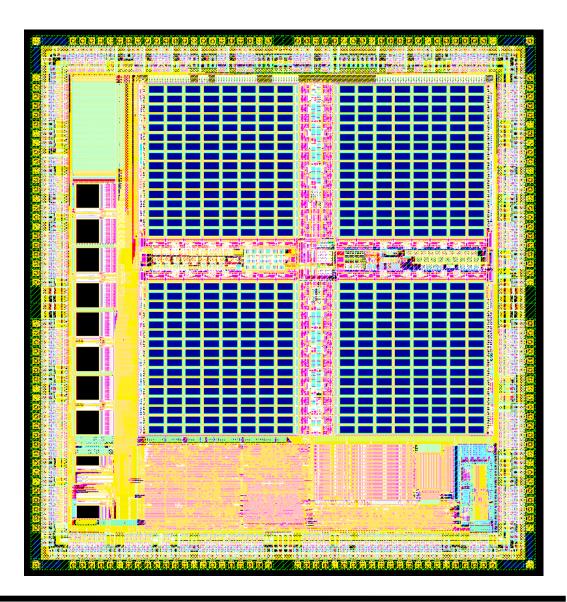
- The BIU converts data between the 128-bit internal bus and the 32-bit external bus
- The BIU supports a **burst transfer** mode to realize fast data transfers to and from external devices
- The BIU has two *Read Buffers* and two *Write Buffers*
 - Double buffering is employed to enable seamless burst transfers between the internal DRAM and external devices

External Bus-master Access (Evaluation)

- CPU operations are almost undisturbed by external accesses
 - ex. Dhrystone 2.1 + External Bus-Master Access (Burst Read)

Other M32Rx/D Features

- Debugging Support
 - JTAG interface
- Multiprocessing Support
 - Master-Slave mode
- Power Saving Modes
 - Stand-by mode:
 - Only the DRAM clock is supplied, other clock supplies are stopped
 - CPU sleep mode
 - CPU and Caches are stopped
 - D-Cache is woken up by external bus-master accesses


M32Rx/D Specification

CPU Core Architecture		M32R Architecture Upwards Compatible (12 additional instructions including 5 additional DSP function instructions)	
	Pipeline	2-instr. parallel execution, 6 stage	
	DSP Function	MAC (32bit x 16bit + 56bit) 1 cycle execution, 2 accumulators	
	Cache	Instruction: 4K Byte, Data: 4K Byte	
Performance		110 MIPS (Dhrystone), 200MOPS @100MHz	
Internal Memory		4M Byte (32M bit), x 128 bit organization	
Peripheral Functions		JTAG Interface / Debug Function	
External Bus		Address: 27 bit, Data: 16/32 bit, 25MHz(max)	
Operating Clock		100 MHz (internal)	
Power Supply		External: 3.3V, Internal: 2.5V	

M32Rx Chip Layout

- Design Rule
 - 0.25. m CMOS, 3 Metal
- Chip Size
 - $9.7 \ x \ 10.29 \ mm^2$

Summary

- M32Rx/D chip as a CPU with DRAM
 - A high performance microcontroller boosted by a high performance internal memory system
- M32Rx/D chip as a DRAM with CPU
 - An intelligent memory
 - Multi-processor/multi-memory systems

Mitsubishi M32R family chips provide many possibilities for new styles of computing, Enjoy!