

The Alpha 21264 Microprocessor: Out-of-Order Execution at 600 Mhz

R. E. Kessler COMPAQ Computer Corporation Shrewsbury, MA

Some Highlights

Continued Alpha performance leadership

- 600 Mhz operation in 0.35u CMOS6, 6 metal layers, 2.2V
- 15 Million transistors, 3.1 cm², 587 pin PGA
- Specint95 of 30+ and Specfp95 of 50+
- Out-of-order and speculative execution
- 4-way integer issue
- 2-way floating-point issue
- Sophisticated tournament branch prediction
- High-bandwidth memory system (1+ GB/sec)

Alpha 21264: Block Diagram

3

Alpha 21264: Block Diagram

4

21264 Instruction Fetch Bandwidth Enablers

- The 64 KB two-way associative instruction cache supplies four instructions every cycle
- The *next-fetch* and *set predictors* provide the fast cache access times of a direct-mapped cache and eliminate bubbles in non-sequential control flows
- The instruction fetcher speculates through up to 20 branch predictions to supply a continuous stream of instructions
- The tournament branch predictor dynamically selects between *Local* and *Global* history to minimize mispredicts

Instruction Stream Improvements

Compaq

Fetch Stage: Branch Prediction

- Some branch directions can be predicted based on their past behavior: Local **Correlation**
- Others can be predicted based on how the program arrived at the branch: Global Correlation

Tournament Branch Prediction

Alpha 21264: Block Diagram

9

Mapper and Queue Stages

• Mapper:

- Rename 4 instructions per cycle (8 source / 4 dest)
- 80 integer + 72 floating-point physical registers

• Queue Stage:

- Integer: 20 entries / Quad-Issue
- Floating Point: 15 entries / Dual-Issue
- Instructions issued out-of-order when data ready
 - Prioritized from oldest to youngest each cycle
- Instructions leave the queues after they issue
 - The queue collapses every cycle as needed

Map and Queue Stages

Alpha 21264: Block Diagram

Register and Execute Stages

REK August 1998

13

Integer Cross-Cluster Instruction Scheduling and Execution

• Instructions are statically pre-slotted to the upper or lower execution pipes

• The issue queue dynamically selects between the left and right clusters

• This has most of the performance of 4-way with the simplicity of 2-way issue

0	Cluster 0	Cluster	1
m. video		mul	
shift/br		shift/br	
add / logic		add / Io	gic
Reg		Reg	
add / logic / memory		add / logic / memor	у
	1		1

Integer Execution Units

Alpha 21264: Block Diagram

21264 On-Chip Memory System Features

• Two loads/stores per cycle

• any combination

• 64 KB two-way associative L1 data cache (9.6 GB/sec)

- phase-pipelined at > 1 Ghz (no bank conflicts!)
- 3 cycle latency (issue to issue of consumer) with hit prediction

Out-of-order and speculative execution

• minimizes effective memory latency

• 32 outstanding loads and 32 outstanding stores

- maximizes memory system parallelism
- Speculative stores forward data to subsequent loads

Memory System (Contd.)

Data Path

Low-latency Speculative Issue of Integer Load Data Consumers (Predict Hit)

• When predicting a load hit:

- The ADDQ issues (speculatively) after 3 cycles
- Best performance if the load actually hits (matching the prediction)
- The ADDQ issues before the load hit/miss calculation is known

• If the LDQ misses when predicted to hit:

- Squash two cycles (replay the ADDQ and its consumers)
- Force a "mini-replay" (direct from the issue queue)

Low-latency Speculative Issue of Integer Load Data Consumers (Predict Miss)

• When predicting a load miss:

- The minimum load latency is 5 cycles (more on a miss)
- There are no squashes
- Best performance if the load actually misses (as predicted)

• The hit/miss predictor:

• MSB of 4-bit counter (hits increment by 1, misses decrement by 2)

Dynamic Hazard Avoidance (Before Marking)

Program order (Assume R28 == R29): LDQ R0, 64(R28) STQ R0, 0(R28) LDQ R1, 0(R29) Store followed by load to the same memory address!

First execution order: LDQ R0, 64(R28) LDQ R1, 0(R29)◀

. . .

STQ R0, 0(R28) This (re-ordered) load got the wrong data value!

Dynamic Hazard Avoidance (After Marking/Training)

Program order (Assume R28 == R29):LDQ R0, 64(R28)This loadSTQ R0, 0(R28)is marked→LDQ R1, 0(R29)this time

Subsequent executions (after marking): LDQ R0, 64(R28)

STQ R0, 0(R28) LDQ R1, 0(R29) ← The marked (delayed) load gets the bypassed store data!

REK August 1998

New Memory Prefetches

Software-directed prefetches

- Prefetch
- Prefetch w/ modify intent
- Prefetch, evict it next
- Evict Block (eject data from the cache)
- Write hint
 - allocate block with no data read
 - useful for full cache block writes

21264 Off-Chip Memory System Features

- 8 outstanding block fills + 8 victims
- Split L2 cache and system busses (back-side cache)
- High-speed (bandwidth) point-to-point channels
 - clock-forwarding technology, low pin counts
- L2 hit load latency (load issue to consumer issue) = 6 cycles + SRAM latency
- Max L2 cache bandwidth of 16 bytes per 1.5 cycles
 - 6.4 GB/sec with a 400Mhz transfer rate
- L2 miss load latency can be 160ns (60 ns DRAM)
- Max system bandwidth of 8 bytes per 1.5 cycles
 - 3.2 GB/sec with a 400Mhz transfer rate

сомрад 21264 Pin Bus

COMPAQ COMPAQ Alpha / AMD Shared System Pin Bus (External Interface)

- High-performance system pin bus
- Shared system chipset designs
- This is a win-win!

Dual 21264 System Example

Compaq

Measured Performance: SPEC95

REK August 1998

Compaq

Measured Performance: STREAMS

Alpha 21264

REK August 1998

Summary

• The 21264 will maintain Alpha's performance lead

- 30+ Specint95 and 50+ Specfp95
- 1+ GB/sec memory bandwidth

• The 21264 proves that both high frequency and sophisticated architectural features can coexist

- high-bandwidth speculative instruction fetch
- out-of-order execution
- 6-way instruction issue
- highly parallel out-of-order memory system