
HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

SH4 RISC Microprocessor
for Multimedia

Fumio Arakawa, Osamu Nishii, Kunio Uchiyama, Norio Nakagawa
Hitachi, Ltd.

1

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Outline

1. SH4 Overview
2. New Floating-point Architecture
3. Length-4 Vector Instructions
4. 3DCG Performance
5. Double Precision Support
6. Conclusions

3DCG: Three Dimension Computer Graphics

2

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

SH4 Overview
- Hitachi's SuperH Series Family
- For Consumer Multimedia Systems
 Home Video Game, Handheld PC
- Excellent Performance with Consumer Price
 300 VAX MIPS
- Excellent 3DCG-Performance with Consumer Price
 5.0 M Polygons/sec *

- IEEE 754 Standard Floating-point Architecture
 Double-precision with Hardware Emulations

* measured with an original simple geometry benchmark

3

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

SH4 Specifications
Technology
Voltage
Frequency
Performance
Cache
TLB
Interfaces
Peripherals

0.25 µm CMOS, 5 Layer Metals
1.8 V (I/O: 3.3 V)
167 MHz (internal) / 83,55, etc. MHz (I/O)
300 MIPS (Dhrystone), 1.17 GFLOPS (peak)
8/16 KB (Inst./Data) Direct-mapped
4/64-entry (Inst./Unified) Fully-associative
SRAM, DRAM, SDRAM, burst ROM, PCMCIA
DMAC, SCI, RTC, Timer

4

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Inst. Fetch

Inst. Dec. Exec. --- Write Back

Memory
Access

Write Back

Target
Inst. Fetch

Integer

Load / Store

Branch

1st Exec. 2nd Exec.

Pipeline Stages

Floating Point
3rd Exec.

Write Back

Reg. Read

Inst. Dec.
Reg. Read

Inst. Dec.
Reg. Read

Inst. Dec.
Addr. Gen.

Addr. Gen.

- Simple Five-stage Pipelines
- Two-way Superscalar

5

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Integer (INT)

Load / Store (LS)
Branch (BR)

Superscalar Issue Combinations

Floating Point (FP)

Both INT & LS (BO)
Not Superscalar (NS)

INT FP LS BR BO NS
X O O O O X
O X O O O X
O O X O O X
O O O X O X
O O O O O X
X X X X X X

INT: Add, Subtract, Shift, etc.
FP: Floating-point Add, Subtract, Multiply, Divide, etc.
LS: Load/Store/Transfer from/to Integer/Floating-point Register, etc.
BR: Branch Always/Conditionally, etc.
BO: Move between Integer Registers, Integer Compare, etc.
NS: Load to Control Register, etc.

6

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Floating-point Arch. Enhancement

- Two Sets of 16 Single Precision Registers
 - The extra set fits 4 by 4 matrix storage
- Length-4 Vector Instructions
 - Inner Product
 - Transform Vector
- Register Pair Load/Store/Transfer Instructions
 - Enough bandwidth for vector operations
- Double Precision Format Mode

7

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Floating-point Instructions

- Common
 - FADD (add)
 - FSUB (subtract)
 - FMUL (multiply)
 - FDIV (divide)
 - FSQRT (Square Root)
 - FCMP (Compare)
 - FNEG (Negate)
 - FABS (Absolute Value)
 - FLOAT (Convert Integer to float)
 - FTRC (Convert float to Integer)
 - FMOV (Move from/to Register)

- Single Precision Mode Only
 - FMAC (multiply-Accumulate)
 - FIPR (Inner Product)
 - FTRV (Transform Vector)

- Double Precision Mode Only
 - FCNVDS (Convert Double to Single)
 - FCNVSD (Convert Single to Double)

8

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Inner Product Instruction
- 16 Registers = 4 (Length-4) Vector Registers

- Operation
 frn' = (fvm,fvn)
- 1 cycle Pitch
- 4 cycle Latency
- Vector Normalization, Intensity Calculation,
 Surface Judgment

fv0 = (fr0 ,fr1 ,fr2 ,fr3)
fv4 = (fr4 ,fr5 ,fr6 ,fr7)
fv8 = (fr8 ,fr9 ,fr10,fr11)
fv12 = (fr12,fr13,fr14,fr15)

m,n: 0,4,8,12
n'= n+3

9

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Multiplier Multiplier Multiplier Multiplier

Alignment
Shifter

Alignment
Shifter

Alignment
Shifter

Alignment
Shifter

4-input Adder

Normalizer
Rounder

Floating-point Register File
fr0 fr4 fr1 fr5 fr2 fr6 fr3 fr7

fr0 * fr4 fr1 * fr5 fr2 * fr6 fr3 * fr7

fr0 * fr4 + fr1 * fr5 + fr2 * fr6 + fr3 * fr7

Inner Product Hardware (Mantissa)

8 read
1 write

4-to-2 Compressor
& 2-input Adder

- Calculating fr7 = (fv0,fv4)

10

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Adder

Subtracter

Maximum Exponent Selector

Normalizer
Rounder

Floating-point Register File
fr0 fr4 fr1 fr5 fr2 fr6 fr3 fr7

fr0 + fr4

Inner Product Hardware (Exponent)
- Calculating fr7 = (fv0,fv4)

Adder
fr1 + fr5

Adder
fr2 + fr6

Adder
fr3 + fr7

Subtracter Subtracter Subtracter

Alignment
Shift Count

Alignment
Shift Count

Alignment
Shift Count

Alignment
Shift Count

11

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Inner Product Accuracy
- Inner Product Inst. is an Approximate Inst.
 - No Accurate Intermediate Value
 (the width is too wide to implement)
 - More Accurate than the Worst Order
 Multiply and Add Inst. Combinations
- Maximum Error:
 (Maximum Product x 2) + (Result x 2)
 - If source operands are rounded values,
 this is enough accuracy.
- For example: 4 Products are 2 , -2 , 1, 0.
 Accurate Result = 1. Inner Product Inst. Result = 0.

-25 -23

26 26

12

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Inner Product v.s. SIMD Multiply-Add

Peak Performance
Latency
Register Port (Read/Write)

Normalizer & Rounder
Floating-point Hardware

1
4
8/1
1
1

 1
12
12/4
 4
 2

Inner Product 4 Multiply-Add

1) Inner Product Inst. and 4 Multiply-Add achieve the same
 peak performance, which is one inner product per cycle.
2) SH4 takes 3 cycles for Multiply-Add. 4 x 3 = 12.
3) Eight more cycles must be filled with independent insts.
 for the peak performance with SIMD architecture.
4) Twice more hardware is necessary for SIMD architecture.

1)

2) 3)

4)

13

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Elastic Pipeline

ID
RR FX F1 F2 F3

WB

- Pipeline stages become 4 cycles for vector Inst.
- In-Order Issue, Out-of-Order Completion

ID: Instruction Decode, RR: Register Read, FX,F1,F2,F3: Floating-point Execution,
AG: Address Generation, MA: Memory Access, WB: Register Write Back

- Only Floating-point Non-Vector Arithmetic
 Inst. right after Vector Inst. is interlocked.

ID
RR AG MA WB

Floating-point Pipeline
(Vector)

Load/Store Pipeline

ID
RR FX F1 F2 F3

WB
Floating-point Pipeline

(Vector)
ID
RR F1 F2 F3

WB
ID

RR
ID
RR

Floating-point Pipeline
(Non-Vector)

Interlock with Resource Conflict

14

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Transform Vector Instruction
- Extra 16 Registers = 4 by 4 Matrix

- Operation
 fvn = matrix • fvn
- 4 cycle Pitch, 7 cycle Latency
- Coordinate Transformation,
 Coordinate Transformation Matrix Generation
- No Work Registers

xf0 xf4 xf8 xf12
xf1 xf5 xf9 xf13
xf2 xf6 xf10 xf14
xf3 xf7 xf11 xf15

n: 0,4,8,12

matrix = xf: extra floating-point register

15

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Why Transform Vector Instruction ?

- Transform Vector Operation = 4 Inner Product Insts. ?
 NO !!
- Modification for Transform Vector:
 frn' = (xvm,fvn)

 - 4 More Work Registers
 - Complicated and More Operands
 - No Generality (Just for Transform Vector)

- Transform Vector Inst. is Better.

xv0 = (xf0, xf4, xf8 ,xf12)
xv1 = (xf1, xf5, xf9 ,xf13)
xv2 = (xf2, xf6, xf10,xf14)
xv3 = (xf3, xf7, xf11,xf15)m: 0,1,2,3, n: 0,4 n'= n+m+8

"fv8 = matrix • fv0" is divided into 4 Inner Products: fr8 = (xv0,fv0)
fr9 = (xv1,fv0)
fr10 = (xv2,fv0)
fr11 = (xv3,fv0)

16

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Transform Vector Implementation

ID
RR FX F1 F2 F3

WB

RR WB

RR WB

RR WB

Reg. Read Reg. Write

fr0 = (xv0,fv0)

fr1 = (xv1,fv0)

fr2 = (xv2,fv0)

fr3 = (xv3,fv0)

fv0 = Matrix • fv0

ID: Instruction Decode, RR: Register Read, WB: Register Write Back
FX,F1,F2,F3: Floating-point Execution

- All reg. reads complete before first reg. write.
 No work regs. are necessary.

FX F1 F2 F3

FX F1 F2 F3

FX F1 F2 F3

17

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Pair Load/Store/Transfer Mode
- Normal Mode:
 - 4-bit Reg. Field represents 16 Regs. of one set.
 - Set specifier must be changed for another set access.
- Pair Mode:
 - 4-bit Reg. Field represents 16 Pair Regs. of all sets.
 - All Regs. can be accessed.
- Transform Vector Throughput: 1 vector / 4 cycles
- Load/Store Throughput: 2 vectors (4 pairs) / 4 cycles
 - Enough for Storing Previous Result Vector and
 Loading Next Vector during Transform Vector

18

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Simple 3DCG Geometry Benchmark

(1)

(2)

z

y

x

screen
(z=1)

(1) Coordinate Transformation
(2) Perspective Transformation
(3) Intensity Calculation

(3)

normal vector

ray vector

triangle polygon

19

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

3DCG Geometry Performance

with
New Arch.

without
New Arch.

5.0 MM polygons/sec

1.2 M

0

2

4

6

20

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Double Precision Support
- Floating-point Libraries for WindowsCE
 - Double Precision
 - ANSI/IEEE 754 Standard
- Emulation with Single Precision Hardware
 - Best cost-performance way
 - Peak performance is 27.8 MFLOPS.
 - Software emulation is 20 times slower.
 - Double precision hardware is 6 times faster
 but 2.5 times more.
- New Double Precision Mode
 - Single's code becomes double's code.

21

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Double Precision Hardware

Multiply-
Add Block

Single : 24b x 24b + 73b
Integer: 32b x 32b + 64b

Addend
Aligner

Normalizer
Rounder

Addend (32b/64b)

Multiplicand (32b)Multiplier (32b)

Aligned Addend (73b)

Feedback Path for Double
Precision Emulation (65b) Result (32b)

Pre-normalizing Result (73b)

- Mantissa Part
 - Add/Subtract/Multiply/Convert: Add Feedback Path

 - Divide/Square Root: Extend from 24 to 53 bits
- Exponent Part: Extend from 8 to 11 bits

22

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

Double Precision Multiply
- Four multiply-adds generate product
- Sticky bit is generated from partial products
 - required width: 106b --> 55b

+
=

+
=
+
=

Lower x Lower (64b)

Lower x Higher (53b)

Higher x Lower (53b)

Higher x Higher (42b)

Product (53b + guard/round)
sticky bit

Lower (32b)Higher (21b)Mantissa (53b)

23

HOT Chips IX in August, '97 SH4 RISC Microprocessor for Multimedia

- Excellent Performance with Consumer Price
 - 300 VAX MIPS
- Excellent 3DCG-Performance with Consumer Price
 - New Inner Product & Vector Transformation Insts.
 - 5.0 M Polygons/sec
 - 1.17 GFLOPS (peak with the new insts.)
- IEEE 754 Standard Floating-point Architecture
 - Double-precision with Hardware Emulations
 - 27.8 MFLOPS (peak)

Conclusions

24

