
TM

Systems Research Center

Continuous Profilin g:
(It's 10:43; Do You Know Where Your Cycles Are?)

Jennifer Anderson Lance Berc Jeff Dean
Sanjay Ghemawat Monika Henzinger Shun-Tak Leung

Dick Sites Mitch Lichtenberg Mark Vandevoorde
Carl Waldspurger Bill Weihl

2TM

Systems Research Center

What’s the problem?

• Performance
– 15 of 16 issue slots wasted in some

applications, at least 1 of 2 in most
• Complexity

– superscalar, out-of-order, SMP, SMT, clusters, …

• How pinpoint performance problems and causes?
• How fix them?

3TM

Systems Research Center

Our solution

• DIGITAL Continuous Profiling Infrastructure
– Transparent
– Complete
– Efficient
– Produces accurate fine-grained information

– Designed for continuous use on production
systems

– Intended for programmers and optimization tools

4TM

Systems Research Center

Related Work

• Simulation (e.g., SimOS)
– slow

• pixie et al.
– single app
– modifies executable

• Samplers (prof, Morph, Vtune, SGI Speedshop)
– some tied to existing interrupts (timers)
– overhead often too high

• None give accurate fine-grained information and
low overhead

5TM

Systems Research Center

System Overview: Acquiring and
analyzing sample data

Analysis tools:
system-, load-file-, procedure-, and

instruction-level

profiles Load files

In progress: optimization tools

cp
u

n

...

cp
u

0

H
ar

dw
ar

e
U

se
r

S
pa

ce
K

er
ne

l d
ev

ic
e

dr
iv

er

...

exec
log

cpu 0

Hash table

Overflow
buffer

Per-cpu data

cpu n
…

Modified
dynamic
loader

Load
map
info

Buffered
samples

daemon

imiss counter

cycle counter

6TM

Systems Research Center

Load-file-level analysis example

Total samples for event type cycles = 6095201, imiss = 1117002

The counts given below are the number of samples for each listed event type.
==
 cycles % cum% imiss % procedure load file
2064143 33.87% 33.87% 43443 3.89% ffb8ZeroPolyArc /usr/shlib/X11/lib_dec_ffb_ev5.so
 517464 8.49% 42.35% 86621 7.75% ReadRequestFromClient /usr/shlib/X11/libos.so
 305072 5.01% 47.36% 18108 1.62% miCreateETandAET /usr/shlib/X11/libmi.so
 271158 4.45% 51.81% 26479 2.37% miZeroArcSetup /usr/shlib/X11/libmi.so
 245450 4.03% 55.84% 11954 1.07% bcopy /vmunix
 209835 3.44% 59.28% 12063 1.08% Dispatch /usr/shlib/X11/libdix.so
 186413 3.06% 62.34% 36170 3.24% ffb8FillPolygon /usr/shlib/X11/lib_dec_ffb_ev5.so
 170723 2.80% 65.14% 20243 1.81% in_checksum /vmunix
 161326 2.65% 67.78% 4891 0.44% miInsertEdgeInET /usr/shlib/X11/libmi.so
 133768 2.19% 69.98% 1546 0.14% miX1Y1X2Y2InRegion /usr/shlib/X11/libmi.so

7TM

Systems Research Center

C source code for assembly
code above (unrolled 4 times):

Instruction-level analysis example

*** Best-case 8/13 = 0.62CPI
*** Actual 140/13 = 10.77CPI

Addr Instruction Samples CPI Culprit
 (cycles) (PC)

 pD (p = branch mispredict)
 pD (D = DTB miss)
9810 ldq t4, 0(t1) 3126 2.0
9814 addq t0, 0x4, t0 0 (dual issue)
9818 ldq t5, 8(t1) 1636 1.0
981c ldq t6, 16(t1) 390 0.5
9820 ldq a0, 24(t1) 1482 1.0
9824 lda t1, 32(t1) 0 (dual issue)
 dwD (d = D-cache miss)
 dwD ... 18.0 cycles
 dwD (w = write-buffer overflow)
9828 stq t4, 0(t2) 27766 18.0 9810
982c cmpult t0, v0, t4 0 (dual issue)
9830 stq t5, 8(t2) 1493 1.0

 s (s = slotting hazard)
 dwD
 dwD ... 114.5 cycles
 dwD
9834 stq t6, 16(t2) 174727 114.5 981c
 s
9838 stq a0, 24(t2) 1548 1.0
983c lda t2, 32(t2) 0 (dual issue)
9840 bne t4, 0x009810 1586 1.0

 for (i = 0; i < n; i++)
 c[i] = a[i];

8TM

Systems Research Center

Procedure-level summary example

 I-cache (not ITB) 0.0% to 0.3%
 ITB/I-cache miss 0.0% to 0.0%
 D-cache miss 27.9% to 27.9%
 DTB miss 9.2% to 18.3%
 Write buffer 0.0% to 6.3%
 Synchronization 0.0% to 0.0%

Branch mispredict 0.0% to 2.6%
 IMUL busy 0.0% to 0.0%
 FDIV busy 0.0% to 0.0%
 Other 0.0% to 0.0%

 Unexplained stall 2.3% to 2.3%
 Unexplained gain -4.3% to -4.3%

 Subtotal dynamic 44.1%

 Slotting 1.8%
 Ra dependency 2.0%
 Rb dependency 1.0%
 Rc dependency 0.0%
 FU dependency 0.0%

 Subtotal static 4.8%

 Total stall 48.9%
 Execution 51.2%
Net sampling error -0.1%

 Total tallied 100.0%
 (35171, 93.1% of all samples)

9TM

Systems Research Center

Generating samples in hardware

• 2 or 3 hardware event counters
• Overflow high-priority interrupt
• Problem: inaccurate pc’s

– 6-cycle delay
– handler sees pc of oldest instruction in issue

queue
• So… can’t use counters to attribute most events

to instructions
– (NB: all existing event counters have this problem)

10TM

Systems Research Center

Problems in acquiring samples in OS

• Interrupt rate is very high
– e.g., one sample every 62K cycles at 400 MHz:

~6,100 samples/sec
• Primary issue: performance!

– Cache misses are expensive (e.g., ~100
cycles/miss to memory)

– If we took 10 cache misses at 100 cycles each,
we’d incur ~1.5% overhead for the interrupt
handler alone -- too much.

11TM

Systems Research Center

Making OS software efficient

• Aggregate samples in hash table
– (pid, pc, event) count

• Minimize cache misses and maximize benefit
from each
– 4-way associative tables
– careful packing of data structures

• Eliminate expensive synchronization operations
– interprocessor interrupts for synchronization

with handler

12TM

Systems Research Center

Storing samples in a database

• User-mode daemon: dcpid
– extracts raw samples from driver
– associates samples with load-files
– updates disk-based profiles for load-files

• Finding load-files from <PID, PC>
– dcpiloader replaces default dynamic loader
– exec hook for statically linked load-files

• Profiles
– text header + compact binary samples
– organized by epoch and platform
– can be shared among machines

13TM

Systems Research Center

Performance of data collection

• Time
– 1-3% total overhead for most workloads
– less than variation from run to run

• Space
– 512 KB kernel memory
– 2-10 MB resident for daemon
– 12 MB disk after one week of profiling on

heavily used timeshared 4-processor server
• Non-intrusive enough to be run for many hours

on massive database machines

14TM

Systems Research Center

Kinds of analysis provided

• Aggregate info:
– breakdown by load-file or function
– compare raw profiles by load-file or function

• Detailed info:
– augmented control flow graph for a procedure

• execution frequencies, CPI, reason(s) for
stalls

• source code (if available)
– annotate source or asm w/ results of analysis
– highlight differences in multiple profiles

15TM

Systems Research Center

Converting cycle samples to CPI and
frequency

• Cycle samples are proportional to total time at head
of issue queue (where most interesting stalls occur)

• Frequency indicates frequent paths
• CPI indicates stalls

Flow Graph

Samples

D

C

P

I

C

A

L

C
Reasons for stalls

Frequency

Cycles per instruction

16TM

Systems Research Center

Estimating frequency from samples
• Problem

– given cycle samples, compute frequency and CPI
• Approach

– Let F = Frequency / Sampling Period
– E(Cycle Samples) = F X CPI
– So … F = E(Cycle Samples) / CPI

• Idea
– If no dynamic stall, then know CPI, so can

estimate F
– Better accuracy: average sample counts from

several instructions

17TM

Systems Research Center

Finding instructions w/o dynamic stalls

• Consider a group of instructions with the same
frequency (e.g., basic block)

• Assume some instructions execute without
dynamic stalls

• Use several heuristics to identify them; then
average their sample counts

• Key insight:
– instructions without stalls have smaller sample

counts

18TM

Systems Research Center

Instructions w/o dynamic stalls (cont)

• But … some small counts
are anomalous (e.g., 981c)

• Avoid anomalies: Identify
issue points (IP)

• Choose some IPs to
average (A)

• Average obtained: 1527
(actual value: 1575)

• Does badly when:
– few issue points
– all issue points stall

Addr Instruction Samples IP A

9810 ldq t4, 0(t1) 3126 *
9814 addq t0, 0x4, t0 0
9818 ldq t5, 8(t1) 1636 *
981c ldq t6, 16(t1) 390
9820 ldq a0, 24(t1) 1482 * *
9824 lda t1, 32(t1) 0
9828 stq t4, 0(t2) 27766 *
982c cmpult t0, v0, t4 0
9830 stq t5, 8(t2) 1493 * *
9834 stq t6, 16(t2) 174727 *
9838 stq a0, 24(t2) 1548 * *
983c lda t2, 32(t2) 0
9840 bne t4, 0x009810 1586 * *

19TM

Systems Research Center

Improving frequency estimates

• Average over more instructions
– normalize sample count by static minimum

number of cycles
– compute “frequency equivalence” classes

• Local propagation using flow equations
– edge frequencies too

• Global propagation using flow equations
– complete consistent estimates

• Label estimates with confidence levels

20TM

Systems Research Center

How accurate are frequency estimates?

• Compare frequency estimates for blocks to
measured values obtained with pixie-like tool

• Similar results for edge frequencies

21TM

Systems Research Center

Identifying reasons (culprits) for stalls

• Explain static stalls by scheduling instructions in
each basic block optimistically using a detailed
pipeline model for the processor

• Explain dynamic stalls by eliminating suspects
– The usual suspects:

• I-cache or ITB miss
• D-cache or DTB miss
• Branch misprediction
• Etc.

– Eliminate suspects heuristically, and list the
remaining possibilities as culprits

22TM

Systems Research Center

Ruling out I-cache misses as culprits

• Is the previously executed instruction in another
cache line?

• How many imiss samples occurred at this
instruction? What is the maximum impact?

basic block
cache line

No

Yes

Depends

23TM

Systems Research Center

• Is the previous occurrence of an operand register
the destination of a load instruction?

• Search backward across basic block boundaries
• Prune by block and arc execution frequencies

Ruling out D-cache misses as culprits

ldq t0,0(s1)

subq t0,t1,t2

addq t3,t4,t0

OR

subq t0,t1,t2

24TM

Systems Research Center

How accurate is culprit analysis?

• Compare with
measured event
counts for
procedures

• E.g., imiss data:

• Correlation ~.9

25TM

Systems Research Center

Future work
• Optimization

– code layout and scheduling
– data structure layout
– prefetching, inlining, hot-cold optimization

• Enhanced profiling
– edge samples
– load/store/jump addresses

• Instruction-level profiling for other processors
– out-of-order execution
– speculative execution
– …

26TM

Systems Research Center

Summary

• Low-overhead transparent profiling
• Profiles complete system continuously
• Accurate fine-grained analysis

– CPI
– execution frequencies for blocks and edges
– reasons for stalls

• Stay tuned…

http://www.research.digital.com/SRC/dcpi

