
Java™ On Steroids:
Sun’s High-Performance

Java Implementation

Urs Hölzle
Lars Bak Steffen Grarup

Robert Griesemer Srdjan Mitrovic

Sun Microsystems

2HotChips IX

History

• First Java implementations: interpreters
– compact and portable but slow

• Second Generation: JITs
– still too slow

– long startup pauses (compilation)

• Third Generation: Beyond JITs
– improve both compile & execution time

3HotChips IX

“HotSpot” Project Goals

Build world’s fastest Java system:

• novel compilation techniques

• high-performance garbage collection

• fast synchronization

• tunable for different environments
(e.g., low-memory)

4HotChips IX

Overview

• Why Java is different

• Why Just-In-Time is too early

• How HotSpot works

• Performance evaluation

• Outlook: The future of Java performance

5HotChips IX

Why Java Is Different

• more frequent calls, smaller methods
– slower calls (dynamic dispatch overhead)

– no static call graph

– standard compiler analysis fails

• sophisticated run-time system
– allocation, garbage collection

– threads, synchronization

• distributed in portable bytecode format

6HotChips IX

Example: javac

Byte codes

Synchronization
Native Methods

Allocation/GC

(executed with JDK interpreter)

7HotChips IX

Just-In-Time Compilers

• translate portable bytecodes to machine
code

• happens at runtime (on the fly)

• standard JITs: compile on method-by-
method basis when method is first
invoked

• proven technology (used 10 years ago in
commercial Smalltalk systems)

8HotChips IX

Why Just-In-Time Is Too Early

• problem: JITs consume execution time

• dilemma: either good code or fast
compiler
– gains of better optimizer may not justify extra

compile time

• root of problem: compilation is too eager
– need to balance compile & execution time

9HotChips IX

Solution: HotSpot Compilation

• lazy compilation: only compile/optimize
the parts that matter

• combine compiler with interpreter

• seamlessly transition between interpreted
and compiled code as necessary

10HotChips IX

HotSpot Architecture

fast interpreter compiler

dynamic profiler /
recompiler

bytecoded
methods

compiled
methods

11HotChips IX

HotSpot Advantages

• shorter compile time

• smaller code space

• better code quality
– can exploit dynamic run-time information

• more flexibility (speed/space tradeoffs)

12HotChips IX

HotSpot Optimizing Compiler

• supports full Java language
– all checks and exceptions, correct FP precision,

dynamic loading, ...

• profile-driven inlining

• dispatch elimination

• many dynamic optimizations

• based on 10 years of research (Sun,
Stanford, UCSB)

13HotChips IX

Garbage Collector

• accurate garbage collector

• fast allocation

• scalable to large heaps
– generational GC

• incremental collection
– typical GC pauses are less than 10 ms

14HotChips IX

Fast Synchronization

• software only

• extremely fast
– up to 50x faster than others

• virtually no per-object space overhead
– only 2 bits per object

• supports native threads, SMP

15HotChips IX

Performance Evaluation

• no microbenchmarks
– but: limited set of benchmarks because HotSpot

VM needs modified JDK

• all times are elapsed times
– 200MHz Pentium Pro™ PC

– warm file cache, best of three runs

• preliminary data / prerelease software

16HotChips IX

JVM Implementations

Systems measured:

• Pre-release “HotSpot” with next JDK

• Microsoft SDK 2.0 beta 2 (MS JDK 1.1)

• Symantec 1.5.3 JIT (JDK 1.1)

17HotChips IX

Caveats

• pre-release compiler & VM
– functionally correct but untuned

– but: implements full Java, no shortcuts for
performance

• pre-release JDK libraries
– VM needs new JDK

• other systems use different libraries
– some are tuned; no JNI

18HotChips IX

Performance

ja
va

cu
p

pa
ra

ffi
ns

ra
yt

ra
ce

pe
an

o

liv
er

m
or

e0%

20%

40%

60%

80%

100%

120%

re
la

tiv
e

pe
rf

or
m

an
ce

ja
va

cu
p

pa
ra

ffi
ns

ra
yt

ra
ce

pe
an

o

liv
er

m
or

e

HotSpot
Symantec
Microsoft

19HotChips IX

Execution Profile (javacup)

compiled code

interpreted code

runtime system /
native code

GC

class loading

compilation

20HotChips IX

CaffeineMarks: Just Say No

• small, artificial, C-like microbenchmarks

• no correlation to real Java programs
– (almost) no calls, no dispatch, no allocation, no

synchronization, no runtime system calls, ...

• easy target for compiler tricks

• prediction: we’ll soon see “infinite”
CaffeineMarks

21HotChips IX

Hardware Wish List (Preliminary!)

• standard RISC is just fine, thanks
– don’t penalize C code!!! (runtime system)

• large caches (esp. I-cache)
– #1 performance booster

• reasonably cheap and selective I-cache
flushing

• maybe some others (1-2% each)

• interpreters could use more support

22HotChips IX

Future of Java Performance

• performance will continue to improve
– max. “typical” overhead 10-20% over C/C++

– object-oriented Java programs will be faster than
C++ equivalents

• JITs will be competitive with static
compilers for most non-numerical apps

• next challenge: high-end SMP
performance

23HotChips IX

Conclusions

• Java performance has improved
dramatically in the past two years and
will continue to improve further

• even performance-sensitive applications
can use Java today

• Java does not need heavy architectural
support to run efficiently
– except in low-power, low-memory systems

24HotChips IX

Kudos

• David Ungar and the Self project
– http://self.sunlabs.com

• David Griswold, Tim Lindholm,
Peter Kessler, John Rose

• JavaSoft’s JVM & JDK teams

