
�

The Design of the Inferno Virtual
Machine

Phil Winterbottom

Rob Pike

Bell Labs, Lucent Technologies

{philw, rob}@plan9.bell-labs.com
http://www.lucent.com/inferno

Introduction
• Virtual Machine are topical

– Intrinsically portable

– More important because of networking

– Should be fast enough for general use

• Conflicting Goals

– Hide difference between architectures

– Must run fast on general purpose machines

• Want VM to be competitive with compiled
programming languages

• Claim: design for on-the-fly compilation not
interpretation

�

Context
• Fundamental shift in Telecom industry toward data

communications

• More diverse networks

– LAN, Wireless, Fiber

– IP, Ethernet, ATM

• Technology changing more quickly

– hardware lifetime much shorter

• Need software systems that are portable, small,
interoperate, based on network computing

• Current projects: Voice+IP router, firewall, ITS

Inferno
• Environment for portable network-centric applications

• Server and client architecture

• Limbo, Dis VM

• Virtual Operating system

– same system interfaces and services everywhere

• Virtual network

– same network interfaces and facilities everywhere

• Virtual graphics environment

– same look and feel everywhere

�

Dis Instructions
• Memory-to-memory architecture

– looks like a CISC cpu, not an abstract machine

• Three operand instructions

– OP src1, src2, dst
• src1, dst are general memory addresses

• src2 restricted to constants and indirect addresses
with small offsets

• All memory addresses are offsets from stack or
module pointer

– no absolute addresses

– software memory protection

Dis Instructions

• Special instructions for processes,
communications, etc.

• Pointers are explicit, and pointer cells store only
valid addresses or nil

– makes reference counting possible

– (c.f. Java which puns cells, requiring runtime
type tagging for r.c.

�

Garbage collection
• Desires:

– small memory

– constant, predictable overhead for real-time

– fast collection

• No single GC can do this; Dis uses hybrid

– Exact reference counting
• instant free, bounded time, smallest footprint

– RT incremental coloring garbage collector
• recovers circular references, runs during idle time

Garbage collection

• Conservative mark and sweep requires more
memory

– typical for Java implementations

– larger arena for efficient execution

– larger high-water mark because of uncollected
garbage

• GC algorithm selection is done during code
generation in the language compiler

�

Interpretation

• Memory traffic depends on instruction set.
Consider: c = a+b

• Stack machine (SM) implementation
push b #LS

push a #LS
add #LLS
store #LS

• Memory-to-memory (MM)
add a, b, c #LLS

Interpretation

• MM has less memory traffic, but costs are masked
by need to decode operands.

• SM’s implicit operands simplify instruction
decode and reduce overhead of fetch execute

�

Compilation

• Tradeoffs change when using JIT compiler

– Although JIT for SM or MM can produce the
same code, where and when the work is done
different

• Want to do all static analysis in front end
(language to VM) compiler

Compilation
• Easier to approach this in MM:

– Storage allocation done statically at compile time

– no puns

• In SM:

– Stack floats; cells change type

– JIT must allocate storage and register to map onto
native instructions

• These conditions dominate because

– in production, will always use JIT

– only interpret when debugging

�

Existing processors

• It is better to match the design of the VM to the
processor than the other way around

• Existing processors are register based, not stack
based

– VM should emulate the predominant
underlying architectures

• Stack machines are easy to interpret harder and
more expensive to JIT

Special-purpose processors

• What about designing a special processor for VM

• Considerations are similar to designing JIT

– register relabeling <=> register allocation

– naïve stack machines produce more memory traffic

– using stack caches to reduce traffic lengthens critical
paths and cycle times

• So Dis would be a better starting point

– but it’s easily compiled so why bother?

�

Special-purpose processors

• In other words, JVM is hard to compile, so silicon
looks attractive;

– a better design would make silicon unnecessary

• Language-specific processors have never
succeeded

– They’re always behind the technology curve

• Besides, special purpose silicon negates
portability goal of a VM

Conclusion
• Better to design VM to match processor

architectures than the other way around

• Still need more work to meet our goals

– performance isn’t as good as we’d like

– register allocation needs to be done better

• Dis compiles quickly to native code that runs
30%-50% slower than native C.

– Only a few months of processor design time

• Design toward on-the-fly compilation, not
interpretation

