
TITAC–2 FOIL 1

TITAC–2:

A 32-bit Scalable-Delay-Insensitive Microprocessor

Takashi Nanya1);2)

Akihiro Takamura2), Masashi Kuwako1), Masashi Imai1)

Taro Fujii2), Motokazu Ozawa2), Izumi Fukasaku2), Yoichiro Ueno2)

Fuyuki Okamoto3), Hiroki Fujimoto3), Osamu Fujita3)

Masakazu Yamashina3), Masao Fukuma3)

1) Research Center for Advanced Science and Technology, University of Tokyo

2) Department of Computer Science, Tokyo Institute of Technology

3) Microelectronics Research Laboratories, NEC Corporation

TITAC–2 FOIL 2

PRESENTATION OVERVIEW

Why Asynchronous ?

Scalable-Delay-Insensitive Model

TITAC–2 Architecture

Design Methodology

Chip Implementation

Conclusions

TITAC–2 FOIL 3

Why Asynchronous ?

CMOS Technology in 2007 (suggested at ISSCC97)
Minimum Tr. size : 0:1�m
Number of logic Trs. : 50M=cm

2

Gate delay: 10ps
Chip area: 10cm2

Fundamental Limitation:
“No signal can run 3mm, or probably even 1mm, in 10ps.”

Wire delays moving into dominance on chip, getting harder and
harder to control

Synchronous systems cannot enjoy the ultra-high speed of
“picosecond devices” !!

TITAC–2 FOIL 4

Why Asynchronous ?

Without any global clock

1. Potentially fast operation:
Achieve “average-case” performance, i.e. optimize frequent operations

and allow rare operations to spend more time

Future technology scales up system performance

2. Timing-fault-tolerance:
Robust and resilient with possible delay variation caused in fabrication

process and operating environment

3. Low power consumption:
Signal transitions occur only when and where needed

4. Ease of modular composition:
No clock alignment needed at interfaces

Can overcome design complexity

TITAC–2 FOIL 5

Delay Models

Assumptions on gate and wire delays.

Play an essential role for dependable system design.

Must be carefully examined and validated for design process, device
technology and operating environment.

Synchronous: Fixed or bounded delays that are known a priori

Asynchronous: Variable delays that are unknown

Fundamental-Mode: Bounded gate and wire delays

Speed-Independent: Unbounded gate delays with no wire delays

Delay-Insensitive: Unbounded gate delays and wire delays

Quasi-Delay-Insensitive: Delay-Insensitive + Isochronic Forks
(All branches of a fork have the same wire delay)

TITAC–2 FOIL 6

Observations

Synchronous or Bounded-Delay model:
Too optimistic of uncontrollable wire delays
Can make design expensive to guarantee reliable operations

Delay-Insensitive or Quasi-Delay-Insensitive model:
Too cautious against unlikely variations of delay
Can cause excessive hardware overhead and performance penalty

What is likely in future VLSI technology ?
Component delays are liable to uncontrollable variation through
design phase, fabrication process, operating environment, aging, etc

However,
It is unlikely that some delays decrease (increase) while others
increase (decrease)
! Scalable-Delay-Insensitive (SDI) Model

TITAC–2 FOIL 7

Scalable-Delay-Insensitive (SDI) Model

Unbounded delays with bounded relative variation ratio

[Definition]

Consider any two components C1 and C2

d1; d2: Delays for C1, C2

D = d1=d2: Relative delay D of C1 to C2

De: Estimated relative delay(at design phase)

Da: Actual relative delay (through system’s lifetime)

R = Da=De: Relative variation ratio

Then, SDI model assumes that 1=K < R < K , where
K is a constant (maximum variation ratio)

TITAC–2 FOIL 8

How SDI model works

Specification: Transition t1 precedes transition t2
DI implementation : t2 must be caused by t1

t1 t2

QDI implementation: t2 may be caused by other fanout
branch that shares its stem with t1

t1

t2

SDI implementation: t2 may be caused by common stem t

that also causes t1, if K � d1 < d2

t

t2

t1

d1

d2

TITAC–2 FOIL 9

Example

Completion signal generation with QDI and SDI models

32bit register
write data
(2-rail 32bits)

register select
(1-outof-40)

40inputs
OR

QDI-ack

6unit delay

5unit delay

16 unit delay

d0
d0

 d31
 d31

32inputs
C-element

40inputs
OR

6unit delay

5unit delay SDI-ack
7 unit delay

(Max. var. ratio = 2)

(a) QDI model
 circuit

(b) SDI model
 circuit

40

64

Racki

 Yi

 Yi

 Di

Di

 EN

Register (1bit)

32

3unit delay (data, en -> write) 2unit delay (write -> ack)

32inputs
C-element

C

C

C

C

 d

 en

ack

 R0

 d

 en

ack

 R0

TITAC–2 FOIL 10

SDI Design Methodology

Step 1: Divide the entire system into functional blocks

Step 2: Design each block as well as interconnections with QDI
model

Step 3: Determine K considering process technology and area
size of each block

Step 4: Apply SDI implementation to each QDI block whenever
Kd1 < d2

TITAC–2 design: K = 2 validated by limiting each functional
block to be within a maximum of 1:93mm � 1:93mm based
on 0:5� CMOS technology used

TITAC–2 FOIL 11

TITAC–2 Architecture

Asynchronous (clock-free) version of MIPS–R2000

Why MIPS–R2000 ?
Nice target to demonstrate asynchronous design
Easy to compare with synchronous counterpart
Reasonably simple to design
C Compiler available

Instruction set ; almost same

Some instructions modified;
multiply/divide resulting in least significant 32 bits
2 delay slots for branch instructions
privileged instructions

Object code: not compatible due to different instruction encoding

TITAC–2 FOIL 12

TITAC–2 Instruction Set

Logical AND, ANDI, OR, ORI

XOR, XORI, LU, LUI

Arithmetic ADD, ADDI, SUB, SUBI

Multiply MUL, MULU

Divide DIV, DIVU, MOD, MODU

Compare SLT, SLTI, SLTU, SLTIU

Shift SLL, SRA, SRL

SLLV, SRAV, SRLV

Load LB, LBU, LH, LHU, LW

Store SB, SH, SW

Branch J, JR, JAL, JALR

BEQ, BNE, BGTZ, BLEZ

BGEZ, BGEZAL, BLTZ, BLTZAL

Privileged MOVSR, MOVRS, RFE, SYSCALL

Instructions

TITAC–2 FOIL 13

TITAC–2 Architecture
la

tc
h

ne
xt

pc

P
C

IR

I-cache

S
R

C

de
co

de

R
1

RD WR

Memory Controller

Register File

address data

D
S

T

IF stage ID stage EX stage ME stage WB

A
LU

D
S

T

D
S

T

F
W

D

la
tc

h

la
tc

h

la
tc

h

la
tc

h

 write buffer

R
1

5-stage pipeline structure

8-KByte Instruction Cache
on chip
(Data cache not implemented)

40 32-bit registers
(R32 – R39 for kernel-mode
use only)

Exception Handling
(for user-mode only)

External Interrupt

Memory Protection

TITAC–2 FOIL 14

TITAC–2 Design Features

2-level Delay Assumption
SDI model for local functional blocks
DI/QDI model for global interconnection

Elastic asynchronous pipeline with FIFO buffer

2-rail 2-phase register transfer

Idle-phase acceleration in 2-rail 2-phase data-path

Adjustable delay elements for bundled-data path
(cache, external bus)

TITAC–2 FOIL 15

Data-Path Encoding

2-rail 2-phase (return-to-zero) for register transfer

Working phase:
(0; 0)! (0; 1) : logic value “0” has arrived
(0; 0)! (1; 0) : logic value “1” has arrived

Idle phase:
(0; 1)! (0; 0) : logic value “0” has cleared away
(1; 0)! (0; 0) : logic value “1” has cleared away

Bundled-Data for on-chip cache and external interface

TITAC–2 FOIL 16

Asynchronous Pipeline Stage Model

Request/Acknowledge Handshake
Decentralized Control

combinational
circuit

source
latch

destination
latch

write
acknowledge

read
request

control
circuit

2-rail
2-phase

2-rail
2-phase

combinational
circuit
acknowledge

C

TITAC–2 FOIL 17

Pipeline Latch

Asynchronous FIFO: 4 primitive latches in cascade
7% faster than 3-latch FIFO

X

X

 Y

 Y

wr_ack

primitive
latch

C

C C

C C

C

 rd_req

C

C

(X, X) : write data input

(Y, Y) : read data output

X’

X’

 rd_req’

TITAC–2 FOIL 18

Combinational Circuit Design

2-rail logic implementation

Direct mapping from BDD representation

Easy to generate completion signals

Hazard-free due to monotonic signal transitions

DCVSL implementation for frequently used modules
(e.g. adders in multiplier)

Gate-level implementation for other cases

TITAC–2 FOIL 19

2-rail Implementation from BDD

0
1 10

0 1

0 1 1
0

F

1 1

1

00

0

A

B

A

B

C

C

A

B

A

B

C

C

Completion

A

B

C

0 1

A

B

C

B

F

FF FF

TITAC–2 FOIL 20

Idle Phase Acceleration

c
o
m
b
i
n
a
t
i
o
n
a
l

c
i
r
c
u
i
t
(
f
)

x1

x1

xn

xn

 y1

 y1

 ym

 ym

x1

 x1

 xn

xn

 y1

 y1

 ym

 ym

(a)

(b)

c
o
m
b
i
n
a
t
i
o
n
a
l

c
i
r
c
u
i
t
(
g
)

c
o
m
b
i
n
a
t
i
o
n
a
l

c
i
r
c
u
i
t
(
f
)

c
o
m
b
i
n
a
t
i
o
n
a
l

c
i
r
c
u
i
t
(
g
)

ia
f(W) : Working phase for "f"

f(W) g(W) f(I) g(I)

time

time

f(W) g(W) f(I)

g(I)ia

f(I) : Idle phase for "f"
g(W) : Working phase for "g"
g(I) : Idle phase for "g"

TITAC–2 FOIL 21

Conversion between 2-railed data and Bundled-data

R
A

M

1-
2C

O
N

V

1-rail

A
D

R

D
A

T
A

2-rail

strobe

A
sy

nc
R

A
MA

D
R

D
A

T
AA
sy

nc
R

A
M

A
D

R

D
A

T
A

2-
1C

O
N

V

 WE

R
A

M

A
D

R
D

A
T

A

Async RAM read-operation Async RAM write operation

delay delay delay

2-
1C

O
N

V

2-rail

Y1X1
/X1
X2
/X2

Y2

strobe
strobe

Y1

Y2

 Z1

/Z1

 Z2

/Z2

TITAC–2 FOIL 22

Chip Implementation

Fabricated in NEC’s 0.5 �m, 3.3 V CMOS Process
with 3 metal layers

Die size: 12:15mm� 12:15mm
496,367 Logic Transistors + 8.6K Byte Memory macro

Number of I/O pins: 164 (excluding power pins)

TITAC–2 FOIL 23

Die Photo

REGISTER
FILE

INSTRUCTION
DECODER

INSTRUCTION
FETCH

CACHE
TAG

INSTRUCTION
CACHE

IN
S

T
. M

E
M

P
R

O
T

E
C

T
IO

N

D
A

T
A

 M
E

M
P

R
O

T
E

C
T

IO
N

DIVIDER

MULTIPLIER

ALU

ME

TITAC–2 FOIL 24

Performance

Dhrystone V2.1 benchmark
52.3 VAX MIPS consuming 2.1 W at 3.3 V in room temperature

Delay Insensitivity

Power Supply Voltage: from 1.5 V to 6.0 V(variable)

Chip Surface Temperature: from �196�C to +100�C

TITAC–2 FOIL 25

Speed and Power Consumption vs. Supply Voltage

(at room temperature)

0

0.5

1

1.5

2

2.5

3

3.5

4

0

10

20

30

40

50

60

1 1.5 2 2.5 3 3.5 4 4.5

Supply Voltage [V]

Speed [MIPS]

Power [W]

D
h

ry
st

o
n

e
[V

A
X

 M
IP

S
]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

W
]

TITAC–2 FOIL 26

Tools Used

Commercial: synchronous

Verilog for RT-level and logic level simulation

Cell-3 Ensemble for layout and design rule check

Saber for analog simulation of original macros

Home-made: asynchronous

Asynchronous synthesis from STG

Speed-independent logic verification

Delay evaluation

Test generation

TITAC–2 FOIL 27

Conclusions

Asynchronous design methodology is now available

Performance is already comparable with synchronous counterpart

SDI model ensures both performance and dependability

Easiness of modular design helps much

More suitable architecture can fully exploit concurrency

Testing is a major challenge

