% Sun \

microsystems

picoJava™:
A Hardware Implementation
of the Java Virtual Machine

Marc Tremblay and Michael O’'Connor
Sun Microelectronics

The Java — picodava Synergy

m Java’'s origins lieinimproving the
consumer embedded market

m picodavais alow cost microprocessor
dedicated to executing Java™-based
bytecodes
—Best system price/performance

mltis a processor core for:
—Network computer
—Internet chip for network appliances
—Cellular phone & telco processors
__ —Traditional embedded applications

microsystems Slide 2

Javain Embedded Devices

Products in the embedded market require:

m Robust programs
—Graceful recovery vs. crash

m Increasingly complex programs with
multiple programmers

—Object-oriented language and
development environment

m Re-using code from one product
generation to the next
—Portable code

microsystems Slide 3

Important Factors to Consider in
the Embedded World

mLow system cost
—Processor, ROM, DRAM, etc.

m Good performance
m Time-to-market
mLow power consumption

Slide 4

Various Ways of Implementing
the Java Virtual Machine

HotJava APls Applets

Virtual Machine
Host Porting Interface

Adaptor
P Adaptor
Adaptor
Browser
OS
OS OS JavaOS
Hardware Hardware Hardware .
Architecture || Architecture | | Architecture | | PicoJava

Slide 5

picoJava

m Directly executes bytecodes
—Excellent performance

—Eliminates the need for an interpreter
or a JIT compiler

—Small memory footprint
m Simple core
—Legacy blocks and circuits are not present

m Hardware support for the runtime
—Addresses overall system performance

& Sun

microsystems Slide 6

Java Virtual Machine

m What the virtual machine specifies:
—Instruction set
—Data types
—Operand stack
—Constant pool
—Method area
—Heap for runtime data
—Format of the class file

N

2~ Sun

microsystems Slide 7

Virtual Machine —Instruction Set

m Data types: byte, short, int, long float, double,
char, object, returnAddress

m All opcodes have 8 bits, but are followed by a
variable number of operands (0, 1,2, 3, ...)

m Opcodes
—200 assigned
—25 quick variations
—3 reserved

Slide 8

Java Virtual Machine Code Size

m Java™-based bytecodes are small
—No register specifiers
—Local variable accessed relative to a base
pointer (VARS)
m This results in very compact code
—Average JVM instruction is 1.8 bytes

—RISC instructions typically require
4 bytes

=

> Sun

microsystems Slide 9

Instruction Length

100%
80% | O others
60% | 013 bytes
40% | W 2 bytes
@ 1 byte
20% +
0% -

Javac
Tomcat
Compr.

Dhrys

Pento

Hot Java

> Sun

microsystems Slide 10

Java Virtual Machine Code Size

m Java bytecodes are about 2X smaller than
the RISC code from the C++ compiler

m A large application (2500+lines) coded in
both the C++ and Java languages

Slide 11

JVM - Instruction Set — RISCy

mSomeinstructions are simple

bi push val ue : push signed i nteger
i add i nteger add
f add :single float add
i feq :branch if equal to O
i | oad of f set .l oad i nteger from
.l ocal variabl e

Slide 12

JVM - Instruction Set — CISCy

mSome instructions are complex

| ookupsw t ch: “traditional” switch statement

byte 1 byte 2 byte 3 byte 4

opcode (171) 0..3 byte padding
default offset
numbers of pairs that follow (N)
match 1
ump offset 1
match 2
jump offset 2

mat-;:.h N
jump offset N

| |

> Sun

microsystems Slide 13

Interpreter Loop

| oop: 1: fetch bytecodes
2: indirect junp to Emulation Code
emul ati on code =P 1: get operands
2. perform
oper ati on
3: increment PC

4: go to | oop

> Sun

microsystems Slide 14

JVM: Stack-Based Architecture

m Operands typically accessed from the
stack, put back on the stack

m Example —integer add:

—Add top 2 entries in the stack and put the result on top
of the stack

—Typical emulation on a RISC processor

| oad tos

| oad tos-1
add

store tos-1

RoNRE

Slide 15

How to Best Execute Bytecodes?

m Leverage RISC techniques developed
over the past 15 years

m Implementin hardware only those
instructions that make a difference

—Trap for costly instructions that do not occur often

—State machines for high frequency/medium
complexity instructions

microsystems Slide 16

Dynamic Instruction Distribution

100% -
90% |
80% |
|
20% | W calls/ret
60% + [0 compute
50% O st object
40% M Id object
30% | tack
20% | @ stack ops
10% |
0% -

Javac
Compr
Ray
Pento
ot Java

Dhryst.

> Sun

microsystems Slide 17

Composite Instruction Mix

m Stack ops: dup, push,loads calset

Yo

and stores to local variables

m compute: ALU, FP,
compute branches compute

m calls/ret: method 28%
invocation virtual
and non-virtual

m ld/st object: access |
- st object
to objects on the 5o,
heap and array accesses

stack ops
43%

Id object
17%

Slide 18

Loads from Local Variables

calls/ret
8%

m Loads from local
stackops variables move data
29% within the chip

m Targetregisteris
often consume
immediately

m Up to 60% of them
can be hidden

idobject ~ m Resulting instruction
st object 2% distribution looks

0% closerto a RISC
processor

compute
36%

Slide 19

Pipeline Design

m RISC pipeline attributes

— Stages based on fundamental paths (e.g. cache
access, ALU path, registers access)

— No operation on cache/memory data
— Hardwire all simple operations
m Enhance classic pipeline
— Support for method invocations
— Support for hiding loads from local variables

microsystems Slide 20

Implementation of
Critical Instructions

Stack

getfield quick offset objectref] value
— Fetch field from object
— Executes as a “load —>
[object + offset]” on
picoJava
| add
— Fully pipelined

— Executes in a single
cycle

valuel result

value2

——

¢§ >, Sun Before After

microsystems Slide 21

Typical Small Benchmarks
(Caffeinemarks, Pentonimo, etc.)

m Few objects, few calls, few threads

95% 5%
| I
! Y
Interpreter Run Time

Speeding up the
Interpreter by 30X resultsin: 95— 3.2
3> _5
8.2

=>Speedup of ~12X

Slide 22

Representative Applications

m Lots of Objects
m Threaded Code

60 - 80% 40 - 20%

% I I
Interpreter + l
Synchronization

Garbage Collection

Speeding up the Object Creation
Interpreter by 30X resultsin: 60_, 2
40— 40
42

=> Speedup of ~2X

-

Slide 23

Percentage of Calls

12

Cihry

=
7
o

Javac

o
"
=
o
(n

X Sun

Haotdavs +

Tomcak
Comp

Varies dramatically according to benchmark type

microsystems Slide 24

picoJava:
A System Performance Approach

m Accelerates object-oriented programs

— simple pipeline with enhancements for features specific
to bytecodes

— support for method invocation
m Accelerates runtime
(gc.c, monitor.c, threadruntime.c, etc.)
—Support for threads
—Support for garbage collection
m Simple but efficient, non-invasive, hardware
support

microsystems Slide 25

System Programming

m Instructions added to support system
programming
— available only “under the hood”
— operating system functions
— access to I/0O devices
— access to the internals of picodava

Slide 26

picodJava- Summary

Best system price/performance for running
Java™-powered applications in embedded markets

m Embedded market very sensitive to system
costand power consumption

mInterpreter and/or JIT compiler eliminated
m Excellent system performance

m Efficientimplementation through use of the
same methodology, process and circuit
techniques developed for RISC processors

Slide 27

