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The Java – picoJava SynergyThe Java – picoJava Synergy

Java’s origins lie in improving the
consumer embedded market

picoJava is a low cost microprocessor
dedicated to executing Java™-based
bytecodes

–Best system price/performance

It is a processor core for:

–Network computer

–Internet chip for network appliances

–Cellular phone & telco processors

–Traditional embedded applications



Slide 3

Java in Embedded DevicesJava in Embedded Devices

Robust programs
–Graceful recovery vs. crash

Increasingly complex programs with
multiple programmers
–Object-oriented language and
development environment

Re-using code from one product
generation to the next
–Portable code

Safe connectivity to applets
–For networked devices (PDA, pagers, cell phones)

Products in the embedded market require:
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Low system cost

–Processor, ROM, DRAM, etc.

Good performance

Time-to-market

Low power consumption

Important Factors to Consider in
the Embedded World

Important Factors to Consider in
the Embedded World
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Various Ways of Implementing
the Java Virtual Machine

Various Ways of Implementing
the Java Virtual Machine

    HotJava        APIs       Applets

Virtual Machine

      Host Porting Interface

Adaptor
  Adaptor

Adaptor
Browser

OS OS
OS JavaOS

picoJavaHardware
Architecture

Hardware 
Architecture

Hardware
Architecture
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picoJavapicoJava

Directly executes bytecodes

–Excellent performance

–Eliminates the need for an interpreter

or a JIT compiler

–Small memory footprint

Simple core

–Legacy blocks and circuits are not present

Hardware support for the runtime

–Addresses overall system performance
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Java Virtual MachineJava Virtual Machine

What the virtual machine specifies:

–Instruction set

–Data types

–Operand stack

–Constant pool

–Method area

–Heap for runtime data

–Format of the class file
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Virtual Machine —Instruction SetVirtual Machine —Instruction Set

Data types: byte, short, int, long float, double,
char, object, returnAddress

All opcodes have 8 bits, but are followed by a
variable number of operands (0, 1, 2, 3, …)

Opcodes

–200 assigned

–25 quick variations

–3 reserved
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Java Virtual Machine Code SizeJava Virtual Machine Code Size

Java™-based bytecodes are small

–No register specifiers

–Local variable accessed relative to a base

pointer (VARS)

This results in very compact code

–Average JVM instruction is 1.8 bytes

–RISC instructions typically require

4 bytes
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Instruction LengthInstruction Length
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Java Virtual Machine Code SizeJava Virtual Machine Code Size

Java bytecodes are about 2X smaller than
the RISC code from the C++ compiler

A large application (2500+lines) coded in
both the C++ and Java languages
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JVM – Instruction Set – RISCyJVM – Instruction Set – RISCy

bipush valuebipush value :push signed integer:push signed integer

iaddiadd :integer add:integer add

faddfadd :single float add:single float add

ifeqifeq :branch if equal to O:branch if equal to O

iload offsetiload offset :load integer from:load integer from

:local variable:local variable

Some instructions are simple
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JVM – Instruction Set – CISCyJVM – Instruction Set – CISCy

Some instructions are complex

        byte 1         byte 2         byte 3   byte 4

opcode (171)                      0..3 byte padding
default offset

numbers of pairs that follow (N)
match 1

jump offset 1
match 2

jump offset 2
...
...

match N
jump offset N

        byte 1         byte 2         byte 3   byte 4

opcode (171)                      0..3 byte padding
default offset

numbers of pairs that follow (N)
match 1

jump offset 1
match 2

jump offset 2
...
...

match N
jump offset N

lookupswitch: “traditional” switch statement



Slide 14

loop: 1: fetch bytecodes

2: indirect jump to

   emulation code

loop: 1: fetch bytecodes

2: indirect jump to

   emulation code

Interpreter LoopInterpreter Loop

Emulation Code

1: get operands

2: perform

  operation

3: increment PC

4: go to loop
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JVM: Stack-Based ArchitectureJVM: Stack-Based Architecture

Operands typically accessed from the
stack, put back on the stack

Example — integer add:

–Add top 2 entries in the stack and put the result on top

of the stack

–Typical emulation on a RISC processor

1: load tos
2: load tos-1
3: add
4: store tos-1
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How to Best Execute Bytecodes?How to Best Execute Bytecodes?

Leverage RISC techniques developed
over the past 15 years

Implement in hardware only those
instructions that make a difference

–Trap for costly instructions that do not occur often

–State machines for high frequency/medium

complexity instructions
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Dynamic Instruction DistributionDynamic Instruction Distribution
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stack ops

43%

ld object

17%

st object

5%

compute

28%

calls/ret

7%

Composite Instruction MixComposite Instruction Mix

Stack ops: dup, push, loads
and stores to local variables

compute: ALU, FP, 
compute branches

calls/ret: method 
invocation virtual 
and non-virtual

ld/st object: access 
to objects on the 
heap and array accesses
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Loads from Local VariablesLoads from Local Variables

stack ops

29%

ld object

21%st object

6%

compute

36%

calls/ret

8%
Loads from local

   variables move data
   within the chip

 Target register is
   often consume
   immediately

 Up to 60% of them
can be hidden
 Resulting instruction

   distribution looks
closer to a RISC
processor
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Pipeline DesignPipeline Design

RISC pipeline attributes

– Stages based on fundamental paths (e.g. cache

access, ALU path, registers access)

– No operation on cache/memory data

– Hardwire all simple operations

Enhance classic pipeline

– Support for method invocations

– Support for hiding loads from local variables
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Implementation of
Critical Instructions
Implementation of

Critical Instructions

getfield_quick offset
– Fetch field from object

– Executes as a “load 

[object + offset]” on 

picoJava

iadd
– Fully pipelined

– Executes in a single 

cycle

objectref    value

. . . . . .

. . . . . .

value2

value1 result

Before After

Stack
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Typical Small Benchmarks
(Caffeinemarks, Pentonimo, etc.)

Typical Small Benchmarks
(Caffeinemarks, Pentonimo, etc.)

95% 5%

Interpreter Run Time

Speeding up the 
Interpreter by 30X results in: 95    3.2

  5          5
   8.2

Speedup of ~12X=>

Few objects, few calls, few threads
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Representative ApplicationsRepresentative Applications

60 - 80%60 - 80%

Interpreter
Synchronization

Speeding up the 
Interpreter by 30X results in: 60     2

40   40
  42

Speedup of ~2X

40 - 20%40 - 20%

Object Creation

Garbage Collection

Lots of Objects

Threaded Code

=>
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Percentage of CallsPercentage of Calls
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picoJava:
A System Performance Approach

picoJava:
A System Performance Approach

Accelerates object-oriented programs

– simple pipeline with enhancements for features specific

.to bytecodes

– support for method invocation

Accelerates runtime

   (gc.c, monitor.c, threadruntime.c, etc.)

–Support for threads

–Support for garbage collection

Simple but efficient, non-invasive, hardware
support
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System ProgrammingSystem Programming

Instructions added to support system
programming
– available only “under the hood”

– operating system functions

– access to I/O devices

– access to the internals of picoJava
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picoJava - SummarypicoJava - Summary

Embedded market very sensitive to system
cost and power consumption

Interpreter and/or JIT compiler eliminated

Excellent system performance

Efficient implementation through use of the
same methodology, process and circuit
techniques developed for RISC processors

Best system price/performance for running 
Java™-powered applications in embedded markets


