

StrongARM SA110

A 160Mhz 32b 0.5W CMOS ARM Processor

Sribalan Santhanam Digital Equipment Corporation Hot Chips 1996

Overview

- Highlights
- Design choices
- μArchitecture details
- Powerdown Modes
- Measured Results
- Performance Comparisons
- Summary

Processor Highlights

♦ Target Market Segments

- Embedded consumer applications
- PDA's, set-top boxes, Internet browsers

Function

- Implements ARM V4 Instruction set
- Bus compatible with ARM 610,710 and 810

Performance

- Record breaking perfomance/watt and price/performance
- 160Mhz @ 1.65V delivers 185 Dhrystone MIPS at < 0.45W
- 215Mhz @ 2.0V delivers 245 Dhrystone MIPS at < 0.9W

Processor Highlights

Process

- 2.5 Million transistors (2.2 Million in caches)
- 3 Metal CMOS
- $-t_{ox}$ of 60 Å, L_{EFF} of 0.25 micron, and V_T of 0.35v

Packaging

- -7.8mm X 6.4mm -> 50mm²
- 144 pin plastic TQFP

StrongARM Design Choices

- Chose a simple design with low latency functional units to fit portable power budgets
 - Simple single issue 5 stage pipeline
 - Long tick model, low latency
 - Could have pipelined deeper for faster cycle time but would have exceeded the power budget
 - Could have gone superscalar but that would have increased control logic cost and power and increased per cycle memory interface needs
 - Would have increased design time

StrongARM Design Choices

Power reduction

- Run core at low voltage and I/O at standard voltage
- Scale technology
- Only run logic section needed in a cycle
 - Conditional clocking: Only drive clocks to sections running
 - Edge triggered flip flops allowed reduction in number of latches

Result

- Best Mips/Watt in the industry
- A core voltage of 1.65V yields 411 Mips/Watt @160MHz

Power Reduction Factors

Start with Alpha 21064: 200Mhz @ 3.45V : Power 26W

VDD reduction: Power Reduction: 4.4x to 5.9W

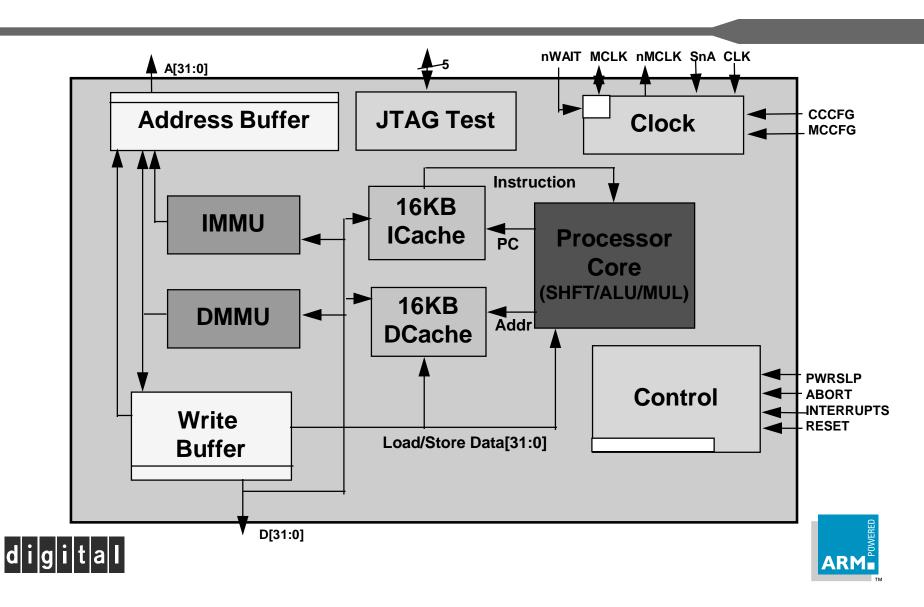
Reduce functions: Power Reduction: 3x to 2.0W

◆ Scale Process: Power Reduction: 2x to 1.0W

Clock Load: Power Reduction: 1.5x to 0.6W

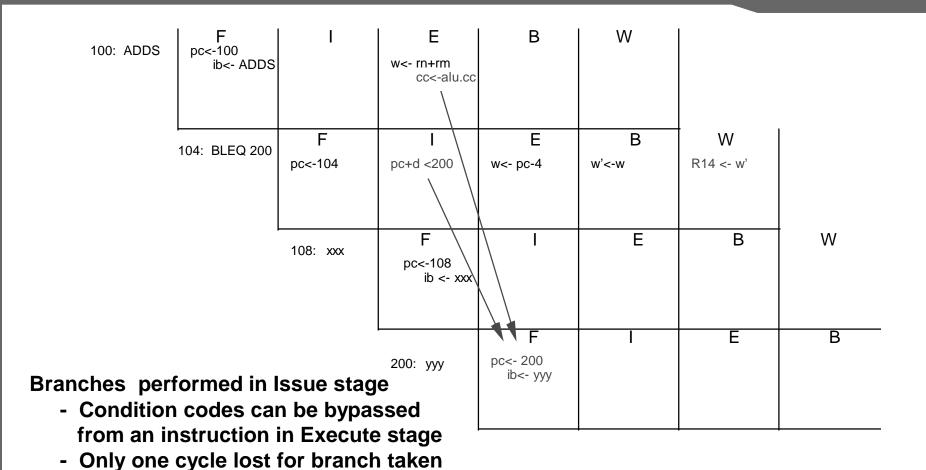
Clock Rate: Power Reduction: 1.25x to 0.5W

StrongARM µArchitecture Highlights


- Simple 5 stage pipeline
- Early branch execution
- Integer datapath with single cycle shift and add
- **♦** 5 register file ports
- High performance integer multiplier
- Split I/D caches
- Asynchronous and Synchronous bus interface

SA110 Block Diagram

Basic Pipeline


100: ADDS R1,	F pc<-100	l I	E	В	W			
	ib<- ADDS	Read rm,rn	w<- rn+rm	w' <- w	R1<-w'			
			cc<-alu.cc					
			\					
104. 11	DR R0, [R1,d]!	F	I	E	В	W		
104. 21		pc<-104	Read Rm, Rn	w,la<- d+R1	L<- mem(la)	R0<- L		
		ib <- LDR			W' <- W \	R1<-w'		
108: SUB x,R0		F	I	I	E	В	W	
108. 30B X,NO			pc<-108	Read RM, RN	Read RM, RN	`w<-R0-	W'<-W	X<-W'
			ib <-SUB					
Basic 5 stage pipeline Instruction Fetch (F)			10C: xxx	F	F	I	E	В
Register read and Issue checks (I) Execute/Effective Address (E)								
Buffer and cache access (B) (Register file Write (W)								
Arrows show	v data forward	ling paths					_	

Branch Example

Multiplier

◆ Perform signed and unsigned multiply and multiply accumulate producing 32 or 64 bit results.

32b*32b->64b 32b*32b+64b->64b

32b*32b->32b 32b*32b+32b->32b

- Multiply accumulate folds accumulate into mul array
- **♦** Multiplier array retires 12 bits of the multiplier per cycle
- Early out for short multipliers
- ◆ Multiplier adder produces 32 bits of result per cycle
- **◆** Latency of 2-4 cycles for 32 bits and 3-5 cycles for 64 bits

StrongARM Caches

♦ Separate 16KB I and D caches

- 32 byte block 32-way set associative
- Dcache is writeback with no write allocation
- Cache tags are virtual addresses
- Dcache stores physical address with cache line.
- Caches occupy half of total chip area
- Self-timed to save power

StrongARM Cache design tradeoffs

♦ Why a 32-way associative cache?

- Wanted Associativity of at least 4-way
- Wanted to minimize power so cache was divided into 8 banks so that only one eighth of the cache was enabled per access.
- Required Single cycle access for read and writes
- Our implementation provided a 32-way associative for free meeting the above criteria.

◆ Writes are done in single cycle same as reads

- removes need for buffer and tag for read after write hazard
- read done before write
- Memory management exceptions writeback original data

MMUs and Write Buffer

Memory Management Units

- Seperate I and D MMU's, each with 32 fully associative entries which can map 4KB,64KB or 1MB page
- ARM architecture includes extensions to memory management protection for efficient support of object oriented systems.
 - Additional checks must be performed in series with TLB lookup
 - Self timing required to perform lookup and protection checks in one cycle

Write Buffer

Eight 16 byte entries with single entry merge buffer

Other StrongARM SA110 Features

- Shift + ALU operation in a single cycle
 - Provides low latency with simple control logic
- Shifter bypassed for shifts by zero
 - Provides power savings when shifter not needed
- ♠ MOV PC, Rx executed in Issue stage
 - Provides low latency for subroutine returns

StrongARM SA110 System Interface

Clocking

- 3.68 MHz input clock multiplied by on-chip low power PLL
 - Generates 16 frequencies from 88MHz to 287MHz
 - Power dissipation = 1.5mW
- System interface clock can
 - Either be driven by the core at 1/2 to 1/9 of the core frequency
 - Or be driven by the system at any frequency up to 66MHz

System interface compatible with existing ARM parts

- Separate 32-bit address and data bus
- Enhancements to current ARM bus provides for wrapped reads to return critical word first and general write merging

Powerdown Modes

◆ Idle Mode

- For short periods of inactivity with quick restart
- Clock trees and all local clocks stop
- PLL continues to run
- Power consumption limited to 20mW

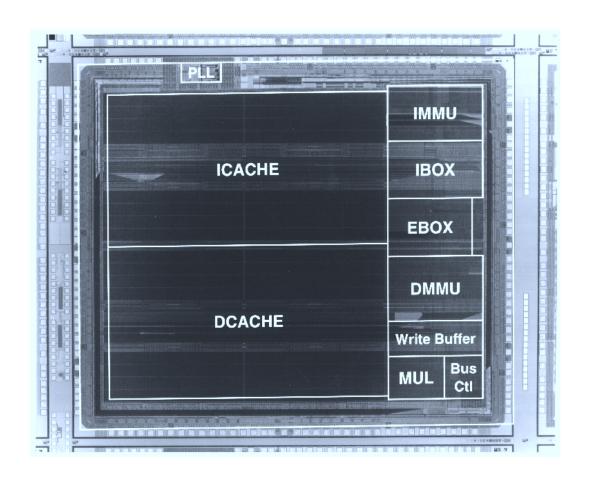
Sleep Mode

- For extended periods of inactivity
- Core power supply turned off
- I/O remains powered and maintain bus state
- Standby current limited to 50μA

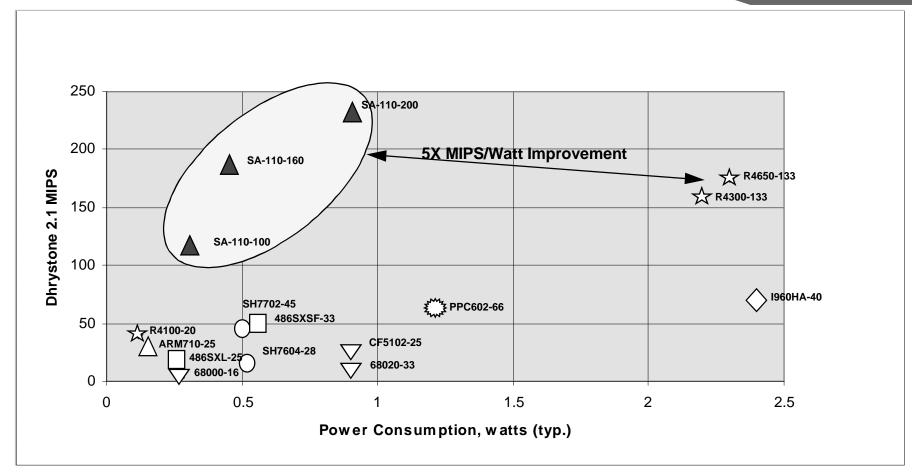
Measured Results

- Running Dhrystone on StrongARM in evaluation board. MCLK frequency = 1/3 PLL frequency.
- Dhrystone fits in cache so internal clocks are running at full speed.
- Measurements taken for I/O Vddx = 3.3v and core Vdd = 1.65v and 2.0v
 - For Vdd = 1.65v, Total power = 2.54mW/MHz -> 254mW @ 100MHz & 406mW @ 160MHz
 - For Vdd = 2.0v, Total power = 3.3mW/MHz ->528mW @ 160MHz & 710mW @ 200MHz
- ◆ Typical power much less on more realistic applications

Simulated Power Breakdown


ICACHE	27%
IBOX	18%
DCACHE	16%
CLOCK	10%
IMMU	9%
EBOX	8%
DMMU	8%
WRITE BUFFER	2%
BIU	2%
PLL	< 1%

StrongARM SA110 Die photo



Performance Comparison

StrongARM SA110 Summary

Function

- Implements ARM Version 4 instruction set
- Bus Compatible with ARM 610, 710, and 810

Performance

- Best performace/watt and price/performace
- 160MHz @ 1.65v -> 185 Dhrystone MIPS at < 0.45W
- 215MHz @ 2.0v -> 245 Dhrystone MIPS at < 0.9W

Process and Package Technology

- 2.5 million transistors fabricated in 0.35 μm 3 metal CMOS with 0.35v V_T and 0.25 μm L_{EFF}
- Die size: 50mm² in a 144 pin plastic TQFP

