
Hot Chips 8 - Aug. 1996 1 of 16 Sun Microsystems, Inc.

A Parallelizing Compiler for UltraSPARC

Chris Aoki
Peter Damron
Kurt Goebel
Vinod Grover

Xiangyun Kong
Michael Lai

Krishna Subramanian
Partha Tirumalai
Jian-Zhong Wang

Sun Microsystems, Inc.
Mountain View, CA 94043

Hot Chips 8 - Aug. 1996 2 of 16 Sun Microsystems, Inc.

Part I: The Uniprocessor

ld-st int int br fp+ fp* fp/ gr+ gr*

Mem Integer Floating point Graphics

I-cache

I-
bu

ff
er

FP registersInteger registers

L1 D-cache

Simple model of the UltraSPARC processor

L2 cache

L1 D-cache

Hot Chips 8 - Aug. 1996 3 of 16 Sun Microsystems, Inc.

UltraSPARC architectural features

• Four-way superscalar with nine independent functional units

• 64-bit V9 architecture

• 16 kb 2-way instruction cache

• 16 kb non-blocking direct mapped data cache

• 9-entry load buffer/8-entry store buffer

• Separate 64 entry, fully associative instruction and data TLB’s

Latency and throughput for common instructions

Latency Pipelined? Max. issue
Load 2 (L1), 8 (L2) Yes 1
Int ALU 1 Yes 2
FP add, mul 3 Yes 2 (1 +, 1*)
FP div, sqrt 12 (sp), 22 (dp) No 1

Hot Chips 8 - Aug. 1996 4 of 16 Sun Microsystems, Inc.

Load buffer and non-blocking L1 cache

• Fully pipelined access to the off chip cache

• Allows some codes to operate out of the large L2 cache

• Compiler must schedule loads and uses sufficiently apart

• Long latencies +High scalarity -------> compiler must extract a lot of ILP

ld

use

UltraSparc: Four issue, latency to L2 =
8 clocks ==> ~31 independent instruc-
tions have to be found and scheduled
between loads and uses, to operate at
the peak rate out of L2

Inner loops are scheduled to operate
out of L2.

Hot Chips 8 - Aug. 1996 5 of 16 Sun Microsystems, Inc.

Inner Loop Scheduling

• Software pipelining (modulo scheduling) is used

• Processor is modelled as a VLIW

• Bounds based scheduler - limits imposed by resources and inter-iteration deps

• Performs a number of loop optimizations for inner loops

• Handles machine specific “rules”

• > 1300 inner loops scheduled in SPEC’92

• > 90% produce schedules that saturate resource/dependence limits

• > 99% are within 10% of the resource/dependence limits

• Most loops operate at or close to the predicted rate on the system

Hot Chips 8 - Aug. 1996 6 of 16 Sun Microsystems, Inc.

Scheduling and register allocation

Schedule

Estimate reg pr

Re-schedule

Allocate

OK?
No

Yes

• Scheduler targets high performance initially
(register pressure is a secondary metric)

• If the pressure is thenestimated to be high, the
schedule is relaxed

• Statistics show that the final allocation is very
close to the estimated register requirement

• Allocator also handles machine specific rules
(e.g. ld [addr],%f0 locking both %f0 and%f1)

• Less than 10 cases of spills in SPEC’92 loops

• Less than 20 schedules compromised due to
high register pressure

Hot Chips 8 - Aug. 1996 7 of 16 Sun Microsystems, Inc.

Multiple condition codes and conditional moves

x > y?

z = f z = t

w = z*x

(x>y) -> fcci
movgt fcci,t,z
movle fcci,f,z
z*x -> w

YesNo

• Four floating point condition
codes are available in SPARC V9

• Allows multiple comparisons to
execute simultaneously

• Can eliminate some branches

• Improved scheduling of branch
free code

• Useful for min, max and other
simple cases (e.g. hydro2d)

Hot Chips 8 - Aug. 1996 8 of 16 Sun Microsystems, Inc.

Non-faulting loads

• Permits loads to be executed early thereby covering load latency

• Relies on code motion (guided by profile information)

• Compiler must evaluate profitability, manage register pressure and disambiguate
memory references to obtain maximum benefit

95 15

100

90 10 55

ld

595 515

100

90 10 505505

ld

?
?

Hot Chips 8 - Aug. 1996 9 of 16 Sun Microsystems, Inc.

VIS/Multimedia instructions

• Look like functions to the programmer

• Compiler allocates registers and schedule instructions

• All backend optimizations are performed including modulo scheduling

for (i = 0; i < times; ++i) {
dsrc1 = s1[i];
dsrc2 = s2[i];

dadd10 = vis_fexpand(vis_read_hi(dsrc1));
dadd11 = vis_fexpand(vis_read_lo(dsrc1));
dadd20 = vis_fexpand(vis_read_hi(dsrc2));
dadd21 = vis_fexpand(vis_read_lo(dsrc2));

resu = vis_fpack16(vis_fpadd16(dadd10, dadd20));
resl = vis_fpack16(vis_fpadd16(dadd11, dadd21));
dres = vis_freg_pair(resu, resl);

((vl_d64 *) da_align)[i] = dres;
}

.L900000142:
fpadd16%f34,%f32,%f36
add %g4,2,%g4
add %o5,16,%o5
fexpand%f9,%f32
cmp %g4,-1
add %o1,16,%o1
ldd [%o7],%f8
fexpand%f5,%f34
add %o7,16,%o7
ldd [%o1-16],%f4
fpack16%f36,%f31
fpadd16%f32,%f34,%f34
fexpand%f6,%f32
fpack16%f34,%f31
fexpand%f2,%f34
std %f0,[%o5-16]
fpadd16%f32,%f34,%f36
fexpand%f7,%f32
.........

Hot Chips 8 - Aug. 1996 10 of 16 Sun Microsystems, Inc.

Block load and store instructions

• Can load (store) 64 bytes of data into (from) 8 double registers with one instruction

• Does not pollute the caches

• Useful for data initializations, copy etc.

• Also used in libraries

Hot Chips 8 - Aug. 1996 11 of 16 Sun Microsystems, Inc.

Part II: Compiling for Multiprocessor Systems

• Automatic Parallelization

- Loop Level (arbitrary nests)
- Targets shared-memory MP systems
- Scientific Codes
- Parallelization Directives

- Loop Level
- Scheduling Control
- Variable Types

- Extensions for Aliasing
- restrict keyword
- no side effect pragma

• Loop Transformations

- Interchange
- Fusion
- Reductions (scalar and array)
- Vector code generation

Hot Chips 8 - Aug. 1996 12 of 16 Sun Microsystems, Inc.

Automatic Parallelization

• Based on dependence analysis

• Profitability Analysis

- Estimate the amount of work performed by the loop nest (uses profile information if available)

- Need about 2500 cycles worth of work for break-even on Ultra systems

- Generate multi-version or straight parallel code

Hot Chips 8 - Aug. 1996 13 of 16 Sun Microsystems, Inc.

Automatic Parallelization (contd.)

• An example of parallel code generation

- The pfunction executed by multiple threads managed by the runtime library.

- The work distribution performed by the master thread

- The user and the compiler could control the work distribution strategy

- The chunk loop in the pfunction can be pipelined

- The transformation is done at intermediate level not source level

do i = 1, n
a(i) = a(i) + b(i)*c(i)

end do

void pfunction(ap,bp,cp,l,u)
double *ap, *bp, *cp;
int l, u

{
int j
for (j = l; j <=u; j++) {

ap[j] = ap[j] + bp[j]*cp[j];
}
}

Hot Chips 8 - Aug. 1996 14 of 16 Sun Microsystems, Inc.

Loop Transformations

• Loop Interchange

Maximize the parallelism and data locality of the parallelized loop nest

Transformation done before parallel code generation and on the residual loop in the parallel function

• Loop Fusion

Improves granularity of loops

Improves the cache behaviour of loops

e.g. wave5 gets speedup because of this (approximately 8 loops are fused together)

• Array Privatization

Based on region summary and data flow analysis in loop nests

Each instance of the pfunction gets its own copy of the array

Very effective on user codes and on some benchmarks in NAS suite

• Array Reduction

Similar to array privatization (based on same analysis)

Each pfunction gets a separate copy of the array

e.g. mdljsp2 and mdljdp2 in spec92, and several NAS benchmarks

Hot Chips 8 - Aug. 1996 15 of 16 Sun Microsystems, Inc.

Loop Transformations (contd.)

• Scalar Replacement

Replaces loads with scalar temporaries

Works within and across loop iterations

Can also dead-code-eliminate array stores that are used as temps

Can also optimize use-to-use array references.

• Vectorization

Based on data dependence analysis

Discovers and isolates vector trancendental functions in loop nests

Allocates scalar variables to vector temporaries and inserts calls to the vector library

Vector library implemented using VIS functions on Ultra systems

Very effective on certain scientific and commercial applications

Hot Chips 8 - Aug. 1996 16 of 16 Sun Microsystems, Inc.

Conclusions

• Compiler exploits parallelism at all levels

• Very effective on a wide variety of applications
- Scientific codes scheduled to operate out of the external cache
- > 90% of 1300 inner loops reach resource/dependence limits
- 1.25X, 1.4X and 1.5X speedup on SPEC’92 with 2, 3 and 4 processors
- Large, parallelized programs show nearly linear speedup

• Optimization algorithms developed in conjunction with hardware design

