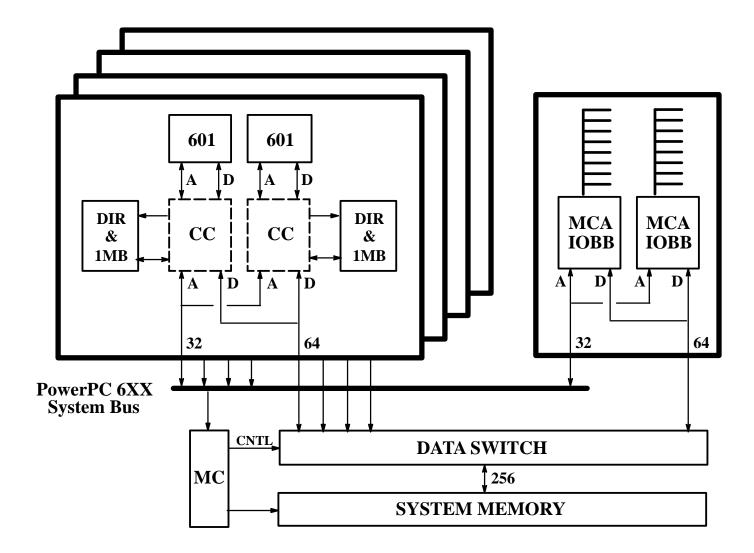


The Orca Chip ... Heart of IBM's RISC System/6000 "Value" Servers


Ravi Arimilli IBM RISC System/6000 Division

- Server Background
- Cache Heirarchy Performance Study
- RS/6000 Value Server System Structure
- Orca Overview
- Orca Design Points
- System Comparisons
- Summary

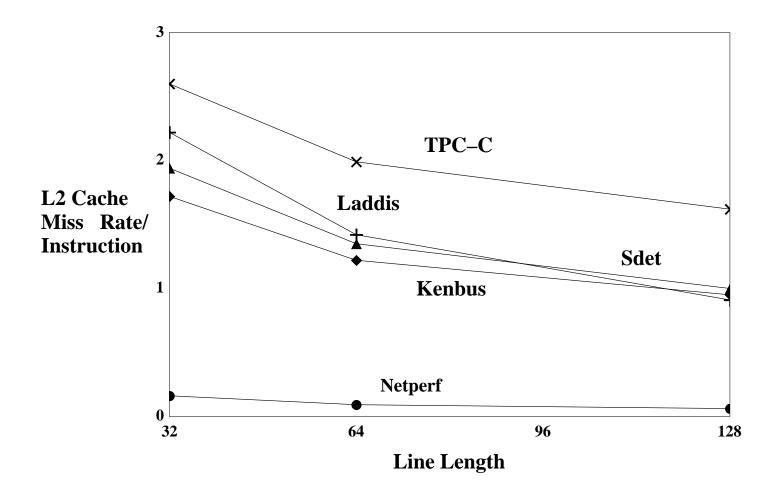
• 2H 94 IBM Announced the RISC System/6000 Model J30/R30:

IBM RS/6000

- IBM's First PowerPC SMP System
- 1–8 Way SMP Scalable Structure
- Introduction of the PowerPC 6XX System Bus
- Symmetric and Coherent I/O Subsystems
- New and Efficient OS for SMP (AIX Ver. 4)
- Upgradable Processor Cards
 - Higher Frequency Processors
 - New PowerPC Processor Designs (604/604e/620/etc)
- "Baseline" Platform to Begin Performance Analysis

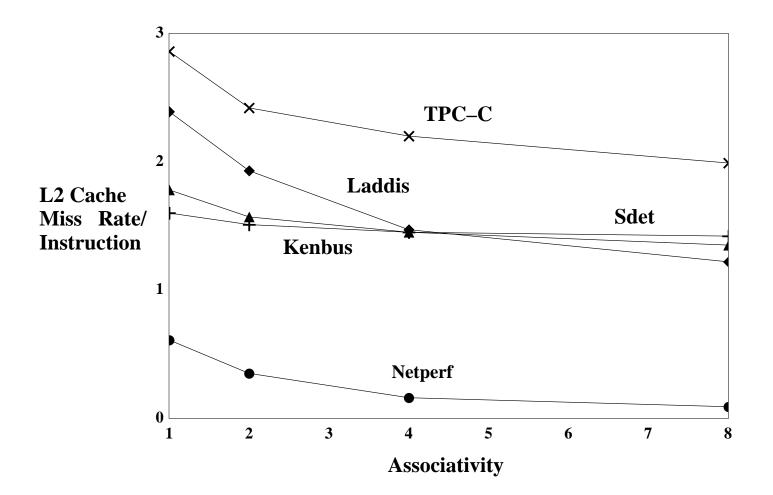
- **TPC–C**
 - Mix of database transactions w/high multiprogramming level
 - Multiple implementations using different database products
 - Large code and data footprint
 - Not OS intensive (12% OS, 88% DB)
- SPEC SFS 097.laddis
 - NFS file server benchmark
 - Mix of file server transactions w/high multiprogramming level
 - Modest code and data footprint
 - Mostly OS intensive (100% OS)
- SPEC SDM 057.sdet
 - Batch oriented software development benchmark
 - Modest multiprogramming level
 - Large code and data footprint
 - Mostly OS intensive (50% OS, 50% commands/libraries)

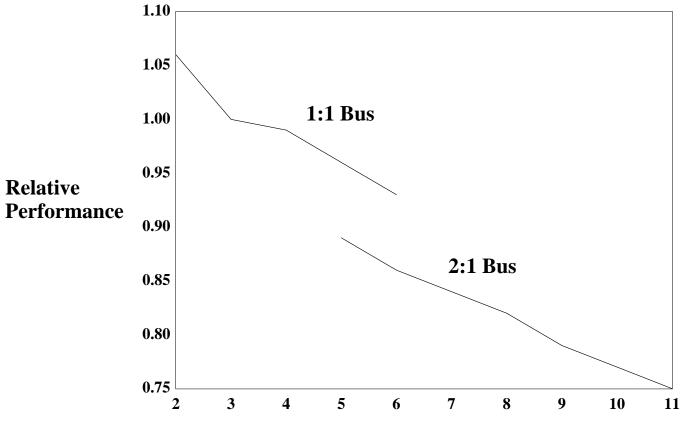
- SPEC SDM 061.kenbus
 - Interactive oriented multiuser benchmark
 - High multiprogramming level
 - Large code and data footprint
 - Mostly OS intensive (50% OS, 50% commands/libraries)
- Netperf
 - TCP–IP Performance Test
 - Mostly sends/receives variable data lengths in loop format
 - Small code footprint, mostly runs in L1 Cache
 - Sensitive to processor Mhz
- Other
 - SPECint 95
 - SPECfp 95
 - G92 (Computational Chemistry)
 - Les (Aircraft surface turbulence simulation)


- Performance Tools
 - Software Instruction Trace Tools
 - Hardware Bus Trace Tools
 - Processor Simulators
 - Cache Simulators
 - Memory Simulators
 - System Topology/Interconnect Behaviorals
 - Validation Tools

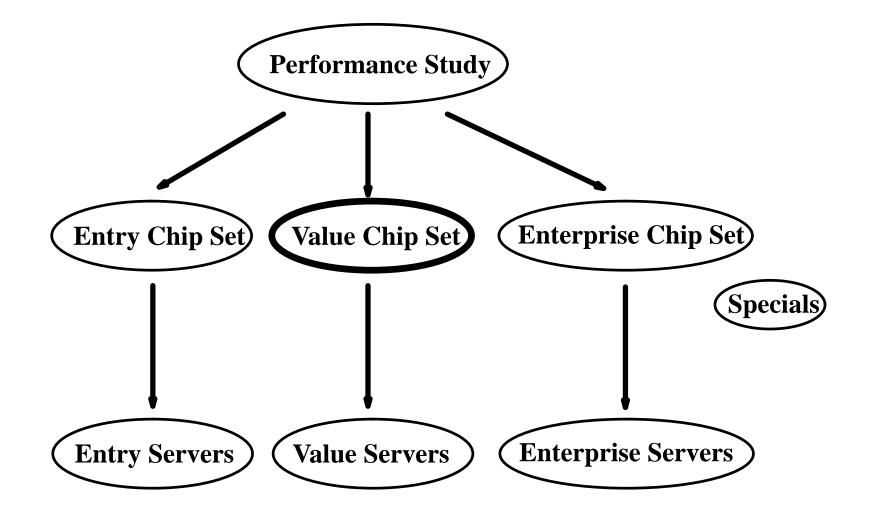
RS/6000

- L2 Cache Parameters Varied
 - Processor to L2 Bus Ratios (1:1, 3:2, 2:1, etc)
 - Associativity
 - Cache Line Size
 - Sectors/Cache Line
 - Cache Replacement Algorithms
 - L2 Access Latency
 - L2 Intervention Latency
 - Lookaside vs Inline L2 Caches

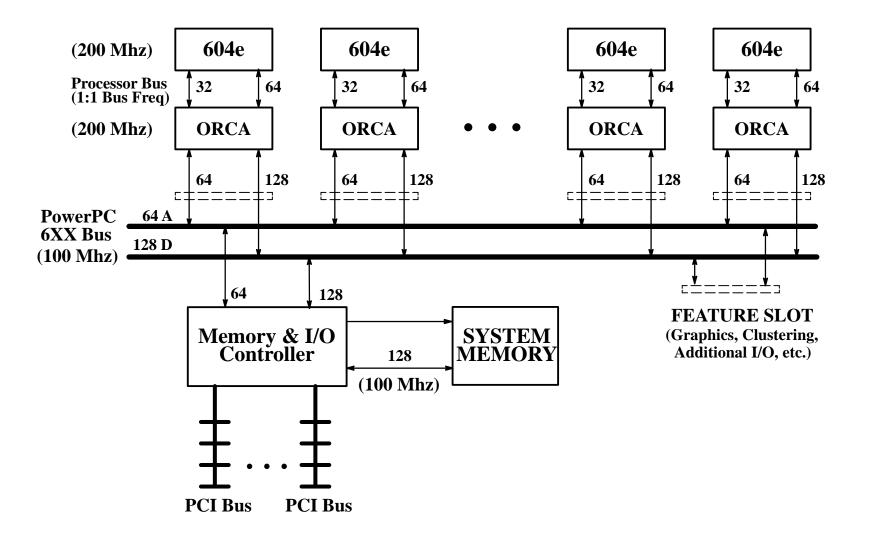

 - Unified vs Split I/D Caches
 Shared L2 Cache vs Dedicated L2 Cache
- System Parameters Varied
 - 601, 604, 604e, and 620 Processor Cores
 - Memory Access Latency
 - System Bus Width
 - System Bus Ratios
 - Memory Bus Width
 - Memory Bus Ratios
 - Switch vs Bus for System Address Bus and Data Bus
 - Switch vs Bus for Memory Bus
 - Number of Processors
 - System Bus Protocols


Effect of Increasing Line Length on Miss Rates (256KB 8–Way SA)

Effects of Increasing Associativity on Miss Rates (256KB 64B Line)

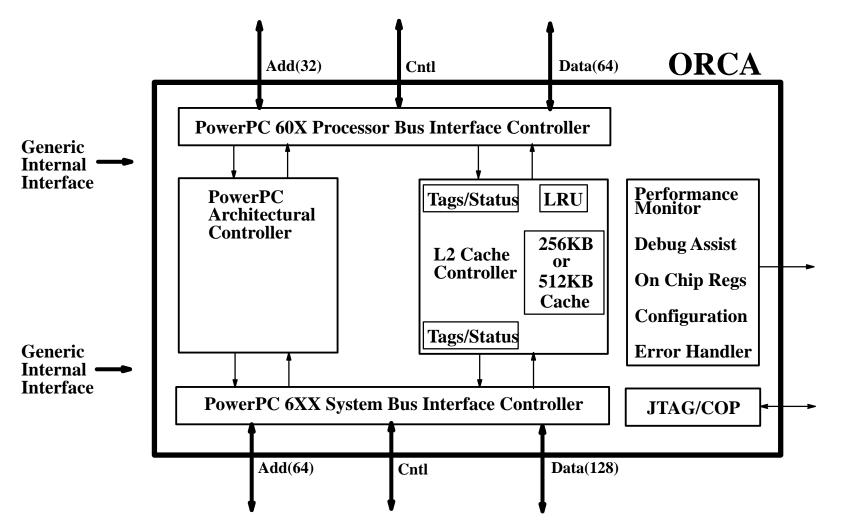


Pclocks Latency Processor to L2 Critical Word

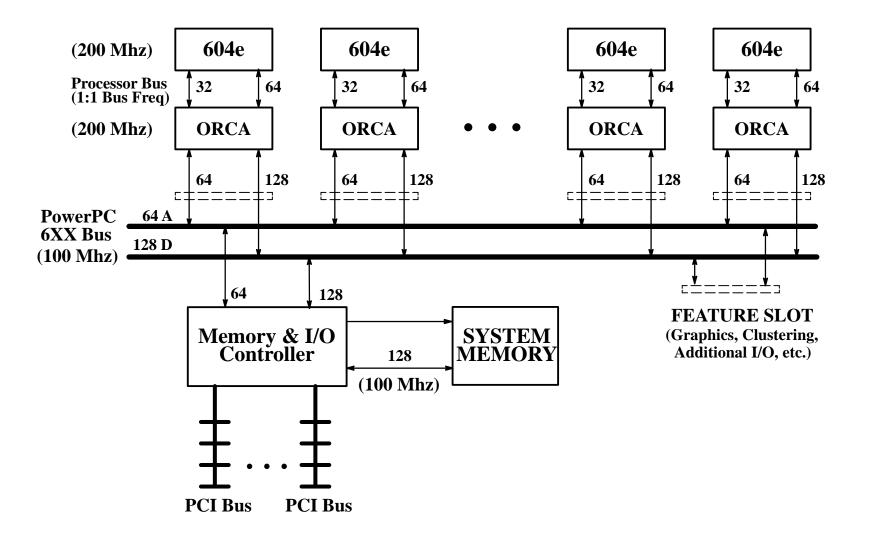

Effect of L2 Latency on Performance of TPC-C

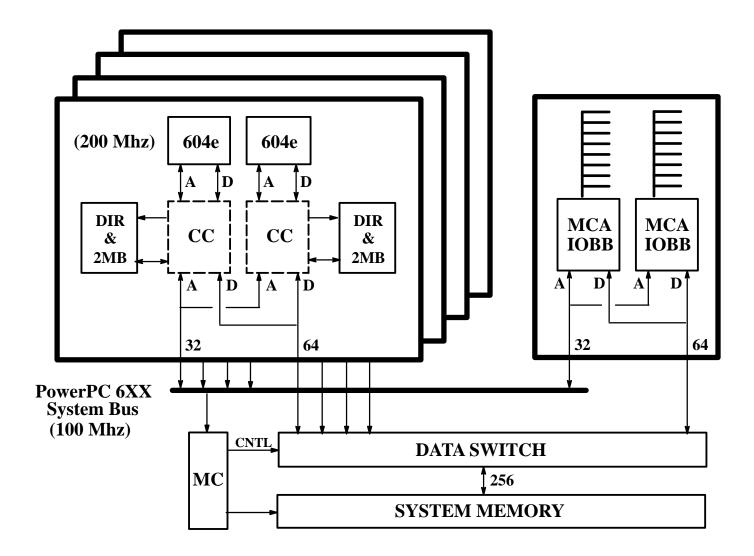
RS/6000 Value Server Structure

- Fully integrated Cache, Tags, Status, LRU and Controller
- Cache Controller Features
 - Fully Integrated L2 Cache, Directory, and Controller
 - 256KB or 512KB Cache Sizes
 - 8 Way Set Associative
 - Low Latency L1 Miss, L2 Hit Access
 - 200 Mhz Operation (1:1 with CPU Frequency)
 - 32B/Cycle Internal Cache Access (6.4 GB/sec Cache Bandwidth)
 - 64B L2 Cache Lines (32B L1 Cache Lines)
 - Non-Blocking L2 Cache for Processor Bus Reads and Writes
 - Non-Blocking L2 Directory for Processor Bus Snoops
 - Non-Blocking L2 Directory for System Bus Snoops
 - Single Cycle Snoop Coherency Resolution
 - High Speed System Bus Intervention Supported
 - Queue Depths Support Processor Bus and System Bus Saturation Limits (Improves Technical/fp Performance)
 - RISC Style Micro-Architecture (Shallow Logic/Heavily Pipelined)
 - Improved SMP "Locks" Performance
 - High Speed Cache Inhibited Stores (Graphics Performance)
 - Single Bit Error Recovery (ECC) for Internal Cache & Directory



- PowerPC 6XX System Bus Features
 - Seperate Address and Data Buses (Fully Tagged)
 - Efficient Address and Data Bus Arbitration Protocols
 - 64 Bit Addressing Support
 - 64 Bit and 128 Bit Data Bus Support
 - High Speed Intervention Support
 - Split "Flow Control" and "Coherency" Responses
 - Efficient Protocols for SMP Clustering
 - Efficient Protocols for Switched Address and Data Buses
 - High Frequency Capable (Latch to Latch Protocols, etc)
 - "System Centric" Bus Architecture (The "System" Directly Controls All OCD Enables, When Snoopers Sample, etc)
 - Heavily Pipelined Address/Response Buses
 - Other (Bus Parking, Prefetch Hints, Large Bursts, etc)
 - Robust Error Recovery


PowerPC 6XX System Bus


- 256KB, 512KB L2 Cache
- 0.5u Nwell CMOS
- Five Level Metal
- Local Interconnect
- L_{eff} = 0.25um
- 2.5V Core Voltage
- 3.3V Drivers/Receivers
- 7.5W Typical Power at 200 Mhz (estimated)
- 430 I/O Signals, CMOS/TTL Compatible
- LSSD Design, JTAG Compliant
- 32mm Ball Grid Array

RS/6000 Value Server Structure

• Alternative Option via RS/6000 J30/R30 Parts

Parameters	System w/R30 Parts	System w/Value Parts
Processor/Frequency	604e @ 200Mhz	604e @ 200Mhz
Processor I/D, Associativity	32K/32K, 4Way	32K/32K, 4Way
Processor Bus Frequency	100 Mhz (2:1)	200 Mhz (1:1)
L2 Access Latency (Pclks)	9-2-2-2	3-1-1-1
L2 Cache Size	512K, 1MB, 2MB	256K, 512K
L2 Associativity	1 Way	8 Way
L2 Cache Line Size	32 Byte	64 Byte
L2 Sectors/Cache Line	1 Sector	2 Sectors
L2 Inline or Lookaside	Inline	Inline
L1 Inclusivity	Imprecise	Precise
L2 Unified or Split I/D	Unified	Unified
L2 Shared or Dedicated	Dedicated	Dedicated
SB Address Switch or Bus	Bus	Bus
SB Data Switch or Bus	Switch	Bus
SB Data Bus Width	8 Bytes	16 Bytes
SB Intervention Latency	Slow	Fast
Memory Bus Width	32 Bytes	16 Bytes
Memory Bus Frequency	50 Mhz	100 Mhz
I/O Subsystem	Micro Channel	PCI

- IBM has performed extensive UNIX server performace studies.
- The result of these studies has led to the development of three server chip sets within the IBM RS/6000 Division:
 - Entry Servers
 - Value Servers
 - Enterprise Servers
- The heart of the Value Servers is the Orca Chip:
 - Fully Integrated L2 Cache (256KB/512KB), Directory, & Controller
 - Drastic departure from traditional L2 Cache Controller designs
 - Highly associative (8 way), low latency, high bandwidth design
 - Aggressive, fully non-blocking, heavily pipelined design points
 - Initial offerring at 200Mhz with future frequency increases
 - Supports the 128 bit PowerPC 6XX System Bus
 - Robust Performance Monitor Support
- The ORCA Chip provides high commercial performance, and scalability w.r.t. the "number" and "frequency" of processors.
- The ORCA Chip enables cost effective desktop PowerPC Microprocessors (604e) to be used in SMP Server environments.