Smaller, Faster, Cooler... **Evolving The PowerPC Family**

Doug Balser Somerset Design Center

IBM

7.3-02

Agenda

- PowerPC ISA
- 1995 Commitments
- Design Methodology
- Portable Design Characteristics
- 603ev Design Point
 - Design features
 - Block diagram
 - Instruction pipeline / latencies
 - Technology
 - Specifications
 - Competitiveness

- Jointly Derived by IBM / Apple / Motorola
- Maintained The ABI With POWER
- Simplify Architecture
 - More appropriate for low-cost single chip microprocessors
- Eliminate Instructions That Impede Clock Rates
- Remove Architecturally Imposed Barrier To:
 - Superscalar dispatch
 - Out-of-order execution
- New Features
 - Multi-processing support
 - Extension to 64 bits
 - Bi-endian support

IBM

7.3-04

1995 Commitments

Design Methodology

IBM

7.3-06

Design Methodology

Arrays - Tags, TLB, BTAC, Etc..

PLL - Phase Lock Loop

COP - Common On Chip Processor

» JTAG

» LSSD Control

RLM - Random Logic Macro

» Control Logic

Super macro - Collection of Custom, RLM, Wiring Cells

LST - Logic Service Terminal

Hot Chips VII

Design Methodology

- Overall Design Objective
 - 1st pass silicon functionality at performance
 - Design on schedule
- · Flexible Design Methodology
 - Vary degree of customization to meet schedule/performance objectives
 - Early design performance trade-off's
 - Early cycle time determination (estimated values)
 - Early floor planning
- Building Block Approach
 - Standard cells for control logic (book)
 - Custom-off-the-shelf data flow macros (ots)
 - Full custom arrays and cycle time critical circuits (custom ots)
- Rules Based
- Two Primary Views of Chip
 - Logical
 - Physical

IBM

7.3-08

Design Methodology

- Floorplanning/Chip Construction
 - Rule based
 - Hierarchical
 - RC estimates for timing
 - » early timing estimates
 - » based on real physical constraints
 - » refined as design progresses
 - Pre-wires for critical areas
 - Auto-route program incorporates pre-wires
- Static Timing Analysis
 - All possible chip paths analyzed
 - Report of path slacks from target cycle time
- Design For Test
 - Level sensitive scan design (LSSD)
 - Automatic test pattern generation (ATPG)
 - Built in self-test (BIST)

Portable Design Characteristics

- Aggressive Performance
 - lags the desktop by 12 mths
- Low Power
 - under 3 watts
- Cost Sensitive
 - under 100 mm²
- Versatile
 - wide range of system configurations

IBM

7.3-10

Design Features

- Increased Cache Size Over PPC603
- Support For Non-integer Bus Clock Multiples
- 5 Volt Tolerant I/O
- Unaligned Little Endian Support
- Hit Under Miss On I-cache
- Improved Divide Performance
- Simplified Memory Addressing (No PIO)
- Power Management
- Improved Clocking

Block Diagram

IBM

7.3-12

Instruction Pipeline

System Configuration

IBM

7.3-14

Power Management

- Dynamic Power Management
 - Inactive units are not clocked
- Static Power Management:

- Doze: timers, snooping only

Nap: timers onlySleep: no clocks

- .5u Nwell CMOS
- Five Level Metal
- Local Interconnect
- $L_{eff} = 0.25um$
- 2.5v Core Voltage
- 3.3v Receivers / Drivers

ibm

7.3-16

Specifications

- Superscalar Low Power RISC Processor
- 16K Instruction Cache, 16K Data Cache
- 165 SPECint92 at 167 MHz (estimated)
- 81 sq mm. Die Size
- 2.6 Million Transistors
- 2.5w Typical Power at 167 MHz (estimated)
- 165 I/O Signals, CMOS/TTL Compatible
- LSSD Design, JTAG Compliant
- Quad Flat Pack & Ball Grid Array Packages

Competitiveness

Performance (SPECint92)

IBM

7.3-18

Competitiveness

Processor Performance/(Power*Size

Processor Performance/Power

ibm

7.3-20

Summary

603ev Processor

- Fully Functional First Pass Silicon
- Rapid Market Introduction
 - highly compatible design
 - samples in 4Q95, production in 1Q96
- High Performance
 - 165 SPECint92, 150 SPECfp92 (estimated)
- Low Power
 - 2.5w typical (estimated)
 - doze / nap / sleep power saving modes
- Low Cost
 - small die size
 - proven technology

