UltraSPARC^(TM)-I: A 64-bit Superscalar Processor with Multimedia Support

Marc Tremblay

Sparc Technology Business

Sun Microsystems Inc.

A Sun Marcacateria, ha. Business

Hot Chips VII August 1995

7.1-02

UltraSPARC-I Vital Statistics

Architecture	64-bit SPARC-V9 with multimedia instruction extensions
Pipeline	4-issue superscalar, 9 stage pipeline
Clock Freq	167 Mhz
Performance @ 167 Mhz, 2MB E\$	240 SPECint92 350 SPECfp92
Power Supply	3.3v
Power @ 3.3V, 167 Mhz	28W* 20mW sleep mode
Die Size	17.7 mm * 17.8 mm = 315 mm ²
Transistors	5.2 million (3.4 million logic)
Technology	CMOS, 4-layer metal, 0.5 μm drawn

SPARC Technology

Architectural Highlights

- Goal: Sustain an execution rate of 4 instructions/cycle at a high clock rate even in the presence of:
 - conditional branches
 - cache misses

Accomplished through:

- simple execution model
 - in-order dispatch, out-of-order completion
- 9 functional units: 2 ALUs, 1 ld/st, 3 FPUs, 2 Graphics, 1 branch
- single-cycle branch following mechanism
- full throughput to the 2nd-level off-chip cache
 - non-blocking data cache
 - 9-entry load buffer
 - pipelined access to the SRAMs

Hot Chips VII

August 1995

7.1-04

Architectural Highlights (continued)

- Provide on-chip support for system level functions
 - Comprehensive multi-media support
 - VIS (Visual Instruction Set)
 - Microarchitecture support for networking
 - Block load, block store: transfer 600 MBytes/s without polluting caches
 - Parallel check-summing, encryption
 - Integrated 2nd-level cache controller
 - L2 cache is formed of synchronous SRAMs
 - Flexible MP support
 - Snooping and directory-based coherence protocols
 - Interconnect supports multiple address and data buses of different widths

Block Diagram

7.1-06

Pipeline Diagram

Integer Pipe

Floating-point/Graphics Pipe

Prefetch and Dispatch Unit

- 16kB ICache, 2-way set associative, 32B line size w/pre-decoded bits
- Next Field RAM which contains 1k branch target addresses and 2k dynamic branch predictions.

|--|

- 4-entry Return Address Stack
- Branch prediction accuracy: 88% SPECint92 / 94% SPECfp92
- 64-entry, fully associative ITLB backs up 1-entry μTLB
- 12-entry Instruction Buffer fed by ICache or second-level cache
- Single-cycle dispatch logic considers "top" 4 instructions

Hot Chips VII August 1995

7.1-08

Floating-Point/Graphics Unit

- Floating-point/Graphics Register File has 5 read ports/3 write ports
- 32 single-precision/32 doubleprecision registers
- 5 functional units, all fully pipelined except for Divide/Square Root unit
- High bandwidth: 2 FGops per cycle
- Short latencies

FP compares: 1 cycle
FP add/subtract/convert: 3 cycles
FP multiplies: 3 cycles
FP divide/square root(sp/dp): 12/22 c.

 Partitioned add/subtract, align, merge, expand, logical: 1 cycle

 Partitioned multiply, pixel compare, pack, pixel distance: 3 cycles

Hot Chips VII August 1995

Load/Store Unit

- 16 kB DCache (D\$), direct-mapped,
 32B line size w/16B sub-blocks
- 64-entry, fully associative DTLB supports multiple page sizes*
- D\$ is non-blocking, supported by 9entry Load Buffer
- D\$ tags are dual-ported, allowing a tag check from the pipe and a line fill/snoop to occur in parallel
- Sustained throughput of 1 load per cycle from second-level cache (E\$)
- Single-cycle stores to D\$ and E\$ via decoupled data and tag RAMs.
- Store compression dramatically reduces E\$ bus utilization

7.1-10

External Cache Unit and System Interface

- 128 External Prefetch Cache Unit Tags Second Level 25+3(parity) Cache/ 18 Memory 128 Interface External Load/ Cache Store Unit Unit 128 128+16 Data System Address (parity) Buffer (UDB) **System Data** 128+16 Distributed (ECC) Arbitration System
- E\$ sizes from 0.5 MB to 4MB
- E\$ is direct-mapped, physically indexed and tagged, w/64B line size
- 5 cache coherency states: MOESI
- Uses synchronous SRAMs with 1-entry internal write buffer
- 16B (+ parity) interface to E\$ supports 2.6 GB/s sustained bandwidth.
- UDBs electrically isolate CPU/E\$ from system data bus.
- Packet-based, 16B system interconnect with separate address and data busses
- Distributed arbitration w/low latency parking mode
- System is 1/2 or 1/3 CPU clock rate
- System address bus supports 4 CPU modules and system controller
- Supports snoopy and directory-based cache coherency protocols.

SPARC Technology

Multi-media Support

VIS - Data Format

- Tailored for graphics

Pixel format:

- 8-bit Red, Green, Blue components
- Alpha value for transparency coefficient
- Band-interleaved and Band-sequential supported
- Conversion instructions

COMPCON 95 March 8, 1995

7.1-12

VIS - Data Format (cont.)

Fixed data:

16-bit components:

63 31 32-bit components:

16/32-bit fixed point components

- used for additional precision or larger dynamic range
- •e.g. intermediate results during image processing
- very high quality imaging
 - · medical processing
 - color pre-press imaging

Hot Chips VII August 1995

Arithmetic Instructions

Core of 2D, 3D graphics and image processing

- filtering, smoothing, alpha blending -> pixel add/mul
- · Gouraud shading -> pixel interpolation
- scaling/rotation, DCT, convolution, warping -> pixel add/mul

Partitioned add and subtract:

- 4 16-bit add/sub or 2 32-bit add/sub
- FPADD16 instruction:

Hot Chips VII August 1995

7.1-14

Arithmetic Instructions (cont.)

Partitioned multiply

- 4 8-bit X 16-bit multiplications
- · signed and unsigned
- · distributed and pair-wise
- Mul8x16 instruction (pair-wise):

Hot Chips VII August 1995

Motion Estimation Instruction

- dominant computation in real-time video compression
- minimal changes in the position of images from one frame to the next
- search for a motion value that minimizes estimation error
 - Pdist operates on 8 pixels in parallel:

$$|a_1-b_1| + |a_2-b_2| + |a_3-b_3| + |a_4-b_4| + |a_5-b_5| + |a_6-b_6| + |a_7-b_7| + |a_8-b_8|$$

- 8 subtracts, 8 absolute values, 7 adds, and 1 accumulate -> 24 operations
- also replaces numerous loads and shifts required
 - replaces ~48 instructions
 - 16x16 blocks requires 32 pdist instructions
 - would typically require ~1500 conventional instructions

Hot Chips VII August 1995 ♦ SPARC Technology

7.1-16

Code Example

- (to be provided later)
 - sofware pipelined loop
 - accesses L2 cache at full throughut
 - uses VIS to accelerate pixel processing

Stanford, California, August 14–15, 1995

Summary

- 64-bit SPARC V9 CPU binary compatibility
- 4-issue, superscalar
- 167 Mhz
- High bandwidth memory system
- Flexible multiprocessing support
- Advanced on-chip multimedia features
- High performance machine for real world applications

■ ♦ SPARC Technology

Hot Chips VII

August 1995