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Fast and Highly Reliable IBMLZ1 Compression Chip and
Algorithm for Storage

® Overview: Fast and Highly Reliable Compression for Storage Systems
® DASD Compression Attributes and Objectives

® Fffects of Compression Errors and Special Handling

® Fast Hardware Pattern Matching, 1Byte/Clock, 2Bytes/Clock, ..

* New Observations for Simpler Compression Algorithm (Accepted as QIC
154 Standard)

e Summary: IBMLZ1 Compression System on a Chip
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Fast and Highly Reliable Compression for Storage Systems

Tape Compression and IDRC '

DASD (DISK) Controller Compression and IBMLZ"

¢ Lossless and General-Purpose Compression

* Simple Algorithm Format and Robust

® Optimized for High-Thruput Hardware Execution: 1Byte/Cycle,
40MH/sec.

® Algorithm Accepted as QIC 154 Standard

1 IDRC, Improved Data Recording Capability, 0.8u, 2.5MB/sec, 1990
2 Fast Pattern Matching Data Fiow, J. Cheng and Y. Cheng, IBM Filed patent application.
3 IBMLZ1 Algorithm, J. Cheng, E. Karnin, D. Craft, and Larry J. Garibay, IBM Flled Patent application.

JMC LMD 3 8/15/95
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DASD Compression Attributes and Objectives

® Speed Aspects
— Speed Challenge
— Broad System Performance Benefits
¢ Reliability
— Compression Amplifies Errors
— Resolutions
® Latency
® Robustness in Compression
— Test Suite
® Fffective on Small Blocks

* 1991, Top-speed compression chips: 2.5MB/sec, 1.5MB/sec, 1.2MB/sec.

® Early Objectives: 16X speed-up, 80% cost reduction

JMC LMD 4 8/15/95
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IBMLZ1 (ALDC) IEM
Compression Benefits for Storage System
® Compression x Compaction = 45 X - 6.0 X
® System Performance
Original Compressed P |
Data ————» <+«—— Data —_ ::3::::“2;
9
%3439 System Compression Reliability
RS/6000| <—» | Adapter | «—» | & Decompres. | < | Cache
OEM
18 MB/sec ESCON System
Computer Storage Controller reauirenent
Hosts

HDA  Array Efficient use of
Silicon Technology

Figure 2. IBMLZ1 Compression Technology

Head-Disk Assembly Development Objectives.

Figure 1. Storage Controller with Compression
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IBMLZ1 (ALDC)

Compression and Decompression

Figure 3. Boat1 in Halftone Figure 4. Compressed Boat1

4 LanRisB1, Glen G. Langdon, Jr. and Jorma Rissanen, “Compression of Black-White Images with Arithmetic Coding,” Volume COM-29, No. 8, June 1081, IEEE Transaction on
Communications.

JMC LMD 6 8/15/95
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Effects of Compression Errors

Figure 5. Decompressed Boat 4 Figure 6. Compressed Boat 4

JMC LMD 7 8/15/95
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IBMLZ1 Algorithm and Hardware Development Paradigm

Extremely High Reliability One undetected Error in 10%°
Efficiencies Robust Compression, Speed, Latency

System Requirement Intra-Parallel instead Inter-Parallel, good
Compression, Speed

Silicon Technology Regularity

JMC LMD 8 8/15/95
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Compression Algorithm Overview

Model Unit Use of Context, Pattern matching removing redundancy
(correlation), xmp: Lempel-Ziv history structure on text.

Coding Unit Assigned code word or augend; desired codelengths to be as
close approximation to source entropy (neg. inverse probability

log).
Source Coded Output
code
source —» MODEL |——» CODER —»

—» MODEL |—— ADAPTOR ——T CODER |[— outp

Compression can take place in two functional stages:

JMC LMD 8/15/95
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IBMLZ1 (ALDC)

LZ (LZ1, LZ2, and LZW) Jacob Ziv and Abraham Lempel™

Arithmetic Coder

Compression Algorithms

Jorma J. Rissanen and Rich C. Pasco

inherent Algorithmic Speed

Algorithm-Hardware

Symbol Base Speed

LZ1

Byte, Char 1

Bi-Level Arithmetic Coder (BAC,
QCoder chips)

Bit 1/8

s LZ1: Ziv and Lempel, “A Universal Algorithm for Sequential Data Compression”, IEEE Transaction on Information Theory, May 1977. pp. 337-343.

¢ JacRac78, Rory D. Jackson and Willi K. Rackl, IBM, "Data Expansion Apparatus,” filed June 30, 1976; US Patent 4,054,951, Oct. 18, 1977.

7 (Z22: 2Iv and Lempel, "Compression of Individual Sequances via Variable-Rate Coding”, {EEE Transaction on Information Theory, September 1978, pp. 530-536.

& LZW: Terry A. Welch, "A Technique for High-Performance Data Compression” |EEE Computer, June 1984, pp. 8-19.

JMC LMD
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String (Pattern) Matching Algorithms
Detecting a pattern, P, in another text string, T.

a b ¢ d a b . . a|blcid

T Text String P pattern given

Figure 7. Pattern Matching of String. T, text string; P, fixed length pattern.

Generic Brut-Forced Straightforward
Knuth-Morris-Pratt [ KnMoPr77 ], “Fast Pattern Matching in Strings ,”

Boyer-Moore [ BoyMoo77 ], “A Fast String Searching Algorithm ,”"

8 [ KnMoPr77 ] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt, “Fast Pattern Matching in Strings ,” SIAM J. Computing , Voiume 6, No. 2, PP. 323 - 350, June
1977. 1DRC, Improved Data Recording Capablity, 0.8u, 2.5MB/sec, 1980

10 { BoyMoo77 ] Robert S. Boyer and K Strother Moore, “A Fast String Searching Algorithm ,” Communication ACM , Volume 20, No. 10, PP. 762 - 772, October 1977.

11 [ SmitB2 ] G. de Smit, “A Comparison of Three String Matching Algorithms ,* Software - Practice and Experience , QA76.5.A15653, volume 12, no. 1, PP. 57 - 68, January
1982,

JMC LMD 11 8/15/95
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LZ1 and Hardware-Oriented Pattern Matchi;g Aspects

History Buffer Incoming Data Stream

shifting 1 2 3 4 5 shifting

Teft Teft
Xy X +— a|a‘a|b[a}<—— ala|a|<—ef

| R —

matching 2

matching 1

Figure 8. Pattern Matching of String..

Differences in Pattern Matching Paradigm

® P is open-ended
® Hardware accounting: cycle vs. step
* Boundary condition

JMC LMD 12 8/15/95
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Prefix-Extension Pattern Matching for Parallel Hardware

History Buffer Incoming Data Stream
Toop untfl dona {
[ read input (byte) and maxe copy. glabal match saarch and write shifting 1 2 3 4 5 shifting
this byte Into CAM pointed by & write select ragister.
: chace (condtion} left left
Pr— Pm— -—
2 condition: (st.rtng count !s & and no match) ‘ | a I a I b | I a f a l 2 I xy
ahip raw byte out
3 condition: (nr! q caunt is 8 snd st lesst ane match found)
m 0 PS, increment string count, shift ( rotate) 75 ;
| thl st chl of & new match string %/
4 mumm ng count >+ 1 and ANY_PS 1s 1) .
ineram !dng count, snift (rotate) PS /= match gets longer */ matching 2
»+2 and 3
5 il ANY_PS 13 8) /" current match ands */ match"\g 1
s
ship raw byte, raset string count ta @, . .
7 TP (match) /7 possible bacx-to-hack match case "a* is a prefix for "a a"
copy watch ta PS, fncrement string count, shift (rﬂull) Ps < :
0 condittans string count +e1 and no AKY_PS *a a* is a prefix for "a a a"
H ship pravicus cas byte out "a a a" can not be extended
pU if (no watch)
ship prasant raw byte out,
it else
copy match to PS, increment string count, shift (rotste) PS ; . =
= could be the 15t char 4T & new natch striog =/ Figure 10. Prefix Extension.
12 condition and, return to &
H

Figure 9. LZ1 Concurrent only Finite State Machine
Control

e Prefix Extension plus Broadcast (CAM) Figure 10: P = ”aaaxy..”: "a”, a
proper prefix, extendable to “aa”; “aa”, a proper prefix, extendable to
”aaa”; "aaa”, not be extendable, “aaa” is the longest matching.

JMC LMD 13 8/15/95
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Prefix-Extension Pattern Matching for Paralla Hardware
(cont.)

CDF Micro-Coded Control Flow

1. Run prefix extension starting on every history buffer location.

2. Use BROADCAST, repeat prefix extension if at least one prefix can
be extended.

* Moving pointers instead of data

* CAM, Content Addressable Memory, for exhaustive search
® 4X IDRC Speed

Compression Throughput 1 Byte per major cycle

Major Cycle Variable 3-5 minor cycles

Minor Cycle 25 ns CMOS 4L

JMC LMD 14 8/15/95
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Look-Ahead Pattern Matching for Parallel FIardware

Desired Properties: Continuous Pipelined Flow

Intra-Parallel not Inter-Parallel To preserving correlation: better
compression and less system overhead

Pipelining Without Stalls Avoid Data (no DDG loop), Control, and
Structure Hazards

Simplified Data Dependance No state machine control; Major cycle =
Minor Cycle; 16X IDRC.

3 Reload PS if Figure 11. Data Dependance Graph of CDF

l—‘ QX’T’EES;l@ & —l 4 Critical Data Flow. DDG is
I Three-Colorable, 4-5 minor
T 2 cycles/major cycle data flow.
If AYY_PS = 1

2048 Match | — | Reset ind. PS | —» Rotate Shift
Outputs 1. Update ANY_PS PS

reset individual
PS if ANY P§ = 1

JMC LMD 15 8/15/95
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IBMLZ1 Algorithm Coding Example

History buffer size = 15
History Buffer Input Char

000000000000000 t

00000000000000t h

0000000000000th e

000000000000the r

00000000000ther e match length: 1, match points: 2,
0000000000there f

000000000theref o

00000000therefo r match length: 1, match points: 3,
0000000therefor e match length: 2, match points: 3,
000000therefore

00000therefore t match length: 1, match points: 6,
0000therefore t h match length: 2, match points: 0,
000therefore th e match length: 3, match points: 0,
OG0therefore the match length: 1, match points: 9,
Otherefore the t match length: 2, match points: 9,
therefore the t h match length: 3, match points: 9,
herefore the th e match length: 4, match points: 9,

JMC LMD 16 8/15/95
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IBMLZ1 Coding Efficiency Analysis
/ *
/**  LZ1_FA: Fast LZ1 with Compression Performance */
/** Analysis. Joe-Ming Cheng 5-12-91 */
/ /
.. MWSG_ .. The time is : Sat May 25 08:08:40 1991
.. MLen MCount Coded Bit
[ 738 6642
1 7623 68607
33 1 12 ©.00022 0.06269
.. Matched symbols are: 4514 38 1 12 6.00022 ©.60269
92 1 12 0.00022 ©.00269
2 3000 6000 0.66460 0.39174 98 1 12 0.00022 0.€0269
3 798 1596 ©.17678 0.44195 109 1 12 ©.068022 0.00269
4 301 1264 ©.06668 0.26050 130 1 12 6.68022 0.00269
5 159 636 0.03522 0.17004 131 1 12 6.,00022 6.60269
6 87 348 0.01927 0.10981 132 1 12 0.00022 ©.00269
7 44 176  ©.00975 6.06512 176 1 12 ©.60022 6.00269
8 22 132 0.00487 ©.03743 271 1 12 0.00022 0.60269
9 31 186 0.00687 ©.64935 286 12 144 0.00266 0.02274
10 13 78 0.60288 0.02431
11 9 54 0.60199 0.01788 Entropy: 1.67951 bits/symbol
12 10 60 0.00222 0.01954 Coded bit length: 10854 average bit used: 2.40452
13 4 24 ©.00089 0.00899 IBMLZ1 coding inefficiency: 43,1683 %
14 4 24 0.00089 0.00899
15 4 24  0.00089 ©.09899
16 2 16 0.00044 0.00494
17 2 16 0.00044 0.00494
18 1 8 0.00022 0.00269
25 1 8 0.00022 0.00269
JMC LMD 17 8/15/95
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Observation 1

Observation 2

New Observations

Limited match length to 192 has less than .5 %
compression loss.

® Reduced latency
® Preserved pipeline flow (PCDF).

Match Length distribution: One-Sided Exponentail till 26 - 28,
then appeared to be random.

e Simpler Code Book
e Conducive to Faster Decompression/Compression

JMC LMD

Hot Chips VII

18 8/15/95
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IBM
Effects of Compression Errors

i

Figure 12. Decompressed Boat 4

Figure 13. Compressed Boat 4

JMC LMD 19 8/15/95
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High Reliability
Compression Functional Checkings
Original Data Coded Data
¢ Undetected Error: 1 in 10%
CRC Generation o 1. Integrated Source and ECC
Compare Logte BUFFER coding
CRC Generatfon . .
1 2. Hardware Duplication
3. Compression and
Figure 14. Compression and Decompression Pair Decompression Coupling
for Encoding Reliability. .
Figure 14
® Compression Paths Checking
® Used two-dimensional
Checkings.
JMC LMD 20
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High Reliability (cont.)

Minimal

o sz | —— Compression CAM Checking
Conpare e Compression Degradation Check
2 t ® 768 Vector Self-Scrubbing

Figure 15. CAM Self-Checking for Reliability.

Chip and Logic Checkings

® Scan-Path
® Build-In Self Test
® |EEE Boundary Scan

JMC LMD 21 8/15/95
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IBMLZ1 Compression Ratios

Compressed-To Ratlos ¢ Suite of 44 Test Cases
vs. Input Blocking Sizes

1. 38 Host applications
2. 6 PC and workstation
applications.

® Fast Attack not implemented at

T T T T T T
§12 1024 2048 4096 8182

Block Size present
Figure 16. Compressed-To Ratios over 44
Test Cases.
JMC LMD 22 8/15/95
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IBMLZ1 Compression Chips

IBMLZ1 Algorithm

Simplex Compression and Decompression
Fixed 40MB/sec Compress/Decompress rate
1 undetected error in 18 EXP 30

Full Test Access Port (TAP) function

153,279 cells used on 182K image (10.45mm x 10.15mm)
44,5k logic, 2k CLOCK, 9k TAP;

CAM 64,000; GRAM 21,550 (1Kx9) and 12,448 (256x18)
176 pins: OCR 69; 0CD 70; VDD/GND 24;

Programmable VDD/GND 13;

Power: 250mW measured (1.19 W estimated)

4,500 Test Cases: Base Patterns, 27 Regular,

55 Look Ahead, 3 complete files; 165 Test Types;

and 50 delay runs and 27 TAP delay mode test cases.

Figure 17. IBMLZ1 COMP Chip Photo
COMP2-40

JMC LMD 23 8/15/95
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Concluding Remarks

® Equal or slightly better compression (five algorithms)

® Considerable less hardware complexities in certain areas: Code Book
(12.5%), No State Machine control

® Fast Hardware Pattern Matching, 1Byte/Clock, 2Bytes/Clock, ..
* Highly Reliable: Six levels of checkings

® Algorithm Based on New Observations: lower latency, lower complexity,
faster decoding

® Algorithm Accepted as QIC 154 Standard

JMC LMD 24 8/15/95
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J. M. Cheng
IBM Storage Systems Division

L. M. Duyanovich
IBM Storage Systems Division

Fast and Highly Reliable IBMLZ1 Compression Chip and Algorithm for
Storage

Data compression allows more efficient use of storage media and communication bandwidth. Standard compression
offerings for tape storage have been well-established since the late 1980s. The compression technology lowers the cost
of storage without changes to any applications or data access methods. The desire to extend these cost/performance
benefits to higher data-rate media and broader media forms, such as DASD storage subsystems, motivated the design
and development of the IBMLZI compression algorithm and technology.

The IBMLZI compression algorithm was designed not only for robust and highly efficient compression, but also for
extremely high reliability. As compression removes redundancy in the source, the compressed data becomes extremely
vulnerable to data corruption. Key design objectives for the IBMLZI development were: efficient hardware execution
and efficient use of silicon technology; and minimum system integration overhead. Through new observations of pattern
matching match-length distribution and use of graph vertex coloring for evaluating data flows, the IBMLZI compression
algorithm and technology achieved the above objectives.

Hot Chips VII

Compression Objectives for Storage Controller

The addition of compression capability to the DASD
subsystem facilitates more efficient use of subsystem
resources:  cache, data path bandwidth, and disk
capacity in a transparent manner to the system storing
the data. Compression allows existing platforms and
applications to benefit from a lower storage cost and
potentially higher performance without any change to
system hardware or software. The maximum benefit is
achieved when the compression is performed without
performance loss. This requires a technology which is
capable of running at channel speed (18 MB/sec for
ESCON 1), and the ability to pipeline data through the
compressor without significant store-and-forward pen-
alties.

In addition to the obvious benefits in disk capacity
(IBMLZ1 typically achieved better than a 3:1 savings

1 ESCON, Enterprise Systems Connection I/O Architecture, defines full duplex architecture between channels and control units, the maximum peak

data rate is 19.62 MB/sec.

August 14-15, 1995

in DASD capacity for high-end systems), there are
additional benefits to the subsystem. If the data is
compressed as it enters the subsystem, see Fig. 1, the
cache resource has effectively been tripled. Customers
can benefit either from improved performance due to
better hit ratios, or reduce their cost by configuring
smaller amounts of cache. An added benefit of data
compression upon entry to the subsystem is the
reduced utilization of internal buses and DASD paths
as data flows through the subsystem. Finally, sequen-
tial performance can be improved. In general, on high
end systems with ESCON attached DASD, the
throughput of sequential operations is gated by the
DASD data rate, typically less than the 18 MB/sec
capability of the channel. When the device is trans-
ferring compressed data, the transfer rate is effectively
multiplied by the compression ratio, allowing the full
capability of the channel to be realized.
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Original Compressad

Data _— «———  Data —

$/300
AS/406 System Compression
RS/688 | «—» | Adapter | <«— | & Decompres. | <«—s | Cache

18 MB/sec ESCON

Computer Storage Controllar

Hosts

HDA  Array

Bead-Disk Assembly

Figure 1. Storage Controller with Compression Capability.

The development of a new compression algorithm
and technology was necessary for the direct pipeline
support of 18 MB/sec ESCON, up to 40 MB/sec for
Tape, and for the emerging higher speed communi-
cation protocols. The core of the 3480/3490 IDRC 2
compression algorithm is the FileCOMP file com-
pression model and the BAC 3 compression chip as
engine [ LCAM92]. The FileCOMP and the BAC
were developed between 1980 and 1983. The largest
gate-array sizes for CMOS technology available in
1981 was 3K to 4K. That was one of the key limiting
factors in the selection of the compression algorithm at
that time. To date, the full functional IBMLZ1 com-
pression chip has 120 times the BAC circuits, delivers
16 times BAC throughput at twice the BAC clocking
rate, and achieves about 30% better compression.

Compression Algorithm and System Overview

A compression system, Fig. 2, generally consists of a
Model unit and a Coding unit. The objectives of the
Model unit are: (1) to provide a context model for the
data or characterize the data as string symbols, and (2)
to provide a statistics model for the distribution of the
extracted symbols. Common methods used for redun-
dancy reduction are run-length encoding, pattern
matching, transformation, transform coding, and so on.
The outputs of the Model unit are the extracted
symbols, and possibly the statistics of the symbol dis-
tribution. The objective of the Coding unit is to mini-

mize the overall coded length by assigning optimal
code word for each symbol according to its assumed
probability. It is important to note that the effect of
compression can take place in the Model unit, the
Coding unit, or both. Well-matched Model unit and
Coding unit will give the most compression benefit.
Nevertheless, the computational complexity of hard-
ware or software often limits the practical choice of
the Model and Coding units for intended applications.

coded
source — MODEL [—— CODER |—»
output

Figure 2. Compression System with a Model unit and a Coding
unit.

Two common choices for the Coder unit are
Huffman coding [ Huffman52 ] and Arithmetic coding
[ Rissa76] [ Pasco76] [ Lang84al. In Huffman
coding, each input symbol is mapped to a code word
composed of an integer number of bits. The coded
stream is a concatenated sequence of code words. The
Huffman code satisfies the Kraft inequality
[ Gallag78 ], and can be uniquely decoded. The worst
case redundancy, defined as expected code length less
the binary Shannon's Entropy* [ Hamming80 ], occurs
when the most probable symbol probability is greater
than 50%. The case occurs quite often in compressing
black-and-white image. The arithmetic coding does
well in broad binary symbol cases. The code length of
the arithmetic coding can be made arbitrarily close to
the Shannon's Entropy * or information, and thus
achieves very low redundancy. The arithmetic coding
method can be thought of as a generalization of the
Huffman coding without the need for prefix codes, or
integer-length code words . The Huffman code,
however, remains as the most popular encoding
method for its simplicity and its effectiveness in
general.

Arithmetic coding encourages [ RiLa79 ] [ RiLa81 }
[ WiNeCI87 ] a clear separation between the MODEL

2 IDRC, Improved Data Recording Capability [ PaMcLLa93 1. IDRC is a data compression and compaction standard.

3 BAC, Binary Adaptive Coder chip, the BAC was developed in 1981-1982 on a 3K LSI Logic CMOS array. The BAC chip is also referred to as

the Skew Coder chip, as the twelve augends were 2-*~, or 2-! through 2-*.

4 Entropy, defines the average amount of information, Summation over i p, x logzi (for binary system). log, L ) is the binary information for
P D

symbol(i) with probability p..

Information, in a sense, describes a degree of surprise. The more frequent symbol requires a shorter number of bits to code. If symbol '0' and

'1" appear 93.75% and 6.25% of the time respectively, the optimal code length for '0' and '1' are .093 bit and 4 bits respectively.

page 156
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and the CODING unit, and accommodates the adaptive
model in a natural and coherent manner. The coded

output stream of the arithmetic coder resembles a

single number of extremely high precision. The result
is the sum of sequences of addition and shift oper-
ations. Arithmetic coding, though conceptually more
complex, lends itself well to adaptation and excellent
coding efficiency [ CheLan92 ].

Shannon conceived the notion of arithmetic coding,
and in [ Elias63 ] the method was made symbolwise
recursive. The developments of the full arithmetic
coding technique known today is due to Pasco and
Rissanen. The complexity of the Model, Adaptor, and
Arithmetic Coder, however, delayed the practical use
of arithmetic coding in hardware and software until a
sequence of significant computational simplifications
was made. The successful integration of approximate
counting [ Mor718 ] [ LCAM92] [ Fla85] and proba-
bility estimation [ HLMTS82 ]; multiplication and divi-
sion operator strength reduction to fixed augend based
addition and subtraction; and a simplified common
adaptive mechanism shared among large possible con-
texts for adaptation resulted more than 50 to 1 hard-
ware reduction and software speed-up and as well!
The BAC chip, developed in 1981-1982 [ LCAM92 ],
and the black-white image compression system
(ICOM) [ LaRi81], both benefited from the drastic
complexity reduction. Further major computational
reduction which effected both hardware and software
was the Q-Coder algorithm [ PeMi88]. The ABIC
[ ATLPF88 ] chip which is based on the ICOM model
and Q-Coder is used in IBM High-Speed Check Proc-
essing Products. The SUNSET gray-scale image com-
pression algorithm based on the BAC chip influenced
the JPEG’ standard. IBM also developed simulated
annealing method for the automated optimization of
the arithmetic coder probability-estimation table
[ CheLan93 .

LZ1 and LZ2 Compression Algorithm Review

The LZ1 and the LZ2 compression algorithms are
commonly regarded as Lempel and Ziv's compression
algorithm 1 [ZL77] and algorithm 2 [ZL78]. The
LZ1 and the 1.Z2, in their original form, expressed the
notion of coding Model and bounds on compression.
Professor Lempel noted that more than 90 percent of
the compression software in the PC world is derived
from either LZ1 or LZ2 class algorithms.

The basic LZ1 data structures and operations of the
compression algorithm are:

1. Construct a history structure of the past stream or
of the recent past stream;

2. Use pattern matching to find the maximal incoming
sub-stream residing in the history structure;

3. Substitute the incoming sub-stream with a pointer
into the history structure and length (or their equiv-
alents).

4. If the coded description has shorter length than the
original sub-string, use the coded form.

Conceptually, the history structure of the LZ1 algo-
rithm is a fix-sized sliding window. One can consider
it as a shift register of fixed length, which contains the
recent past symbols. Fig. 3 shows maximal (length)
matches of the incoming sub-string found in two
locations. Match number 1 starts at location 1; and
match number 2 starts at location 5 and extends into
the inputting stream. The matching string is "aaa",
which usually takes 24 bits to code. Since "aaa" also
found in the history buffer, the alternative coding form
is to use three bits denoting the starting address,
another 3 bits for maximal matching length, and 1 bit
to tell whether there is a substitution or not. In this
example, we can replace the 24 bit "aaa" substring
with 7-bit coded words (1-bit tag, 3-bit length field,
and 3-bit offset). In fact, in this example, if even a
single byte matched it would be beneficial to use the
coded form. The alternative provides a 1 bit saving,
using 7 bits instead of 8 bits. In the event no match is
found, the input byte is coded with 9 bits, a 1-bit tag
denoting no match followed by the original byte.

The LZ2, Lempel and Ziv's compression algorithm
2, [ZL78 ] [ MiWa84 ] normally has a tree-structured
history structure for improved search for matches in
software.

5 JPEG, ISO/CCITT Joint Photographic Experts Group, JPEG usually denotes the gray-scale image compression standard proposed and defined by

the group.

August 14-15, 1995
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History Buffer Incoming Data Stream

sh:fting 1 2 3 4 5 shifting
erx = [e ool <= [e]e o]
[

matching 2
matching 1

Figure 3. Pattern Matching of String. Two matchings of the
maximal incoming substring "aaa" are indicated in the
above five-element shift register History buffer.

In 1976, Jackson and Rackl of IBM Fishkill
described “Data Expansion Apparatus,” where in a
long data stream, the repeated sections of data can be
saved by the substitution of fag, address, length, and
the number of repetitions for storage space saving.
The idea is essentially the LZ1. It was filed for patent
in 1976, and obtained the US Patent in 1977
[ JacRac76]. In the patent description, some flavors
of the LZ2 were also described.

Hardware Flow Speed-Up

Fast LZ1 hardware organization is normally based on
two themes: the use of prefix-extension [ CoLeRi90S ],
and the use of very powerful parallel combinatorial
operators. For instance, the longest match in Fig. 3 is
"aaa". Instead of finding the longest match in one
operation, prefix-extension is a simple divide and
conquer approach. The operation is broken down into
a smaller job of searching for a one byte, two byte, or
any small fixed number of bytes in the input stream.
For the one-byte case, Prefix-extension finds first letter
"a" to be the first prefix then tries to extend the prefix.
The substring "aa" becomes the extended prefix, since
"a" was the prefix for "aa". Next, "aaa" becomes the

History Buffer Imput Char

600000000000060 t

600000060600606t h  wote: t 1S n match point 0
0000000000000th ¢ note: t 1s still in match point O
©600000000800the T

600000008060ther e match length: 1, match points: 2,
6000000008there

000608066 theref o

06062600therafo r match Tength: 1, match points: 3,
0egeo60therefor @ match length: 2, match points:s 3,
060030therefore

oes0atherefore t match length: 1, match points: @,
ee0otherafore t h match length: 2, match points: ©,
600therefore th e match length: 3, match points: o,
eotherafore the match length: 1, match points: 9,
Otherefore the t match length: 2, match points: 9,
therefore the t h match length: 3, match points: 9,
herefore the th e match length: 4, match points: 9,
erefore the the m

refore the them e match Jength: 1, match points: 4, 8, 12, 0,

Figure 4. One-byte Prefix Extension and History Buffer size = 15.
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extended prefix. However, "aaa" is not a prefix to a
longer match, or, "aaa" can not be further extended.
Prefix-extension then concludes that the prefix "aaa"
itself is the longest match. For the powerful parallel
combinatorial operators aspect, arrays of massive par-
allel comparators are used for the high-speed 1.Z1
hardware organization. The prefix of one byte or mul-
tiple bytes are simultaneously compared against all
storage locations in the history buffer. The above
organization resembles Content Addressable Memory's
function, hence is often referred to as CAM.

Fig. 4 shows the use of prefix extension of one byte
and a history buffer storing the fifteen previous bytes.
The prefix-extension algorithm used is greedy. If a
byte match found, it assumes itself is the first prefix
and tries to extend the prefix from that byte on.

It is interesting to note that the use of prefix-
extension and the use of parallel compare operators
resembles the algorithmic notion of Radix sort
[ CoLeRi90R ]. As in any two-input comparison based
sorting algorithm the running time is bounded lower
by the information theoretic n log n, n is the input
size. Radix sort, with its more powerful comparing
operator, and sequential sort through each index of
each number is able to achieve a linear relationship
between runtime and input size. Our development of
the high-speed LZ1 compression data flow follows the
radix-sort like mathematical notion of using more
powerful parallel and compounded operators to bring
the CPB, machine cycles needed for
compression/decompressing a byte, down to 1 and
below.

History 8uffer lnpat Char

efore the theme match length: 2, match points: 8, 12,
fore the theme t match length: 3, match points: 8, 12,
ore the theme t h match length: 4, mwatch points: 8, 12,
ve the theme th e match length: 5, match points: 8, 12,
e the theme the n

the theme then watch length: 1, match potnts: 9, 13, 3,
the theme then f

he theme then f o

e theme then fo r

theme then for w

theme then forw a

heme then forwa r match length: 1, match points: 11,
eme then forwar d
me then forward match length: 1, match points: 3, 8,
e then forward t match length: 2, match points: 3,
then forward t h match length: 3, match points: 3,
then forward th ¢ match length: 4, match points: 3,
hen forward the r match length: 1, match points: 11, 14,
en forward ther e

n forward there
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IBMLZ1 Algorithm and Technology Development
In addition to its objectives of robust and efficient
compression, the IBMLZ1 compression algorithm was
designed for reliability as well. The objectives, Fig. 5,
for the IBMLZ1 compression algorithm established at
the onset were:

1. Extremely High Reliability: one undetected error in
10%, As compression removes redundancy in the
source, the compressed data becomes extremely vul-
nerable to data corruption. A single bit error in the
coded stream could essentially result in a total
decoding failure from that bit location and onward.

2. Hardware Execution Efficiency: the hardware
architecture should use as few machine cycles to
compress or decompress a byte as possible. The
architecture should maintain low complexity and
use the silicon technology effectively. In addition,
it is desired to have a moderate complexity growth
as the CPB¢ gets small.

3. Robust Compression: achieve good coding effi-
ciency for broad applications.

4. Minimal System Integration Overhead: the
maximum benefit from compression is achieved
when the compression can be performed without
performance loss. It requires a technology which is
capable of running at channel speed (18 MB/sec for
ESCON 1), and the ability to pipeline data through
the compressor without significant store-and-
forward penalties.

Compression
Efficiency

Reliability

System

requirement

Efficient use of
$111con Technology

Figure 5. IBMLZ1 Compression Algorithm Development Objec-
tives.

Original Data Coded Data
CRC Generation
FIFO
Compare Logic
BUFFER
CRC Generation

- Decompressor |«——

Figure 6. Compression and Decompression Pair for Encoding Reli-
ability.

Extremely High Reliability

The extremely high reliability, one undetected error in
10%, is achieved through the combined use of highly
reliable CMOS technology and the Compression-
Decompression coupled checking scheme. Fig. 6
shows that the CRC (cyclic redundancy code) of the
original data is checked against the CRC of the
decompressed data.  The four byte CRC check
improves the checking power by a factor of close to
1019 Two copies of the CRCs are compared by two
independent comparators to avoid a single point of
failure.

The Compression-Decompression pair does present
system constraints. The compressor may not emit any
code word for a long while during a highly
compressible stream. The maximal compression
latency is the number of original bytes the compressor
takes before it emits a code word . At peak com-
pression, the Decompressor will be running the
maximum latency behind. This implies that the FIFO
buffer between the Compressor and Decompressor

6 CPB: number of machine Cycles needed for compressing or decompressing a (Per) Byte. CPB resembles the use of CPI, Cycles Per Instruction,
for RISC and CISC computer architectural effectiveness measurement.
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must be at least the latency times the data expansion’
factor in size. And that constraint compels the design
of IBMLZI1 to keep the latency small. The smaller
compression latency also improves the storage control
system response time.

CAM Scrubbing Operation: As pointed out earlier,
the CAM's operation is based on using very powerful
parallel combinatorial operators, and the search of the
longest match is done by prefix-extension. What if the
prefix-extension hardware fails? The incoming stream
would then be coded as raw byte in every case, since
no match longer than 1 byte can be found. The coded
output stream will then be expanded by 12.5% due to
the bit used to indicate whether or not a substitution
occurred. In this case, the Compression-
Decompression pair would not be able to detect any
error at all, since the coded stream can be correctly
decoded. This is the class of performance degradation
error that the CAM Scrubbing is intended to prevent.

During the CAM scrubbing, the CAM is split into
two halves. A minimum of 768 test patterns are run
through each half CAM. Outputs at every cycle are
compared during this time.

Hardware Execution Efficiency: Low CPB and Low
Complexity

CPB¢ is defined as the number of machine cycles
needed to compress or decompress a byte. CPB is a
measure of the architectural effectiveness for the com-
pression and decompression units. The first data flow
developed had a mixture of CPB=3 and CPB=5 for
compression. For decompression, the CPB was 1.
With a chip running at 40 Mhz, the data flow deliv-
ered about 10 MByte/sec in the compression mode,
and 40 MByte/sec in the decompression mode.

The asymmetrical compression and decompression
rates of the first data flow were undesirable. The vari-
able encoding rate also presented undesirable control
overhead. Efforts to improving the original data flow
were not fruitful until the data flow was mapped to a
data dependency graph. The data flow appeared to
have a clique (all connected sub-graph) of degree 3
and a self-loop on the exiting vertex of that clique.
The clique corresponded to three irreducible computa-

tion cycles. The self-loop represented the variable 2
additional cycles. The first data flow then was
dropped.

A new data flow was sought, a flow which is of
two-colorable (bipartite) data dependency graph. That
property allows a data flow to be converted directly
into a fully pipelined two-phase clocking design. Our
approach was to seek new more powerful parallel
combinatorial operators.  Encouragingly, the new
more powerful parallel combinatorial operators devel-
oped [ CheChe92 ], also removed the need for inter-
stage control logic all together! Control dependency,
in a sense, is a function of distant past data depend-
ency. In the new data flow, each execution stage
depends only on the data from the previous stage, the
need for inter-stage control is hence removed. Our
second data flow achieved rather impressive symmet-
rical CPB=1 for compression and decompression (most
LZ1 and LZ2 type compressors today have CPB
ranged from 2 to 5) without the need for inter-stage
control.

286LZ1, IBMILZ1, and ALDC Code Development

The IBMLZ1 compression coding algorithm
(format) is a sub-set of the 286LZ1 [ CKCG95]. The
IBMLZ1 is used in IBM's high-performance DASD
controller family, tape drive family, and the AIX file
system with compression. The ALDC (Adaptive
Lossless Data Compression) compression algorithm is
a smaller sub-set of the 286L.Z1. The ALDC algo-
rithm has been approved as Quater-Inch Cartridge
Drive Standard, QIC-154.

1 length code displacement
1 control code extra field
0 original byte

Figure 7. IBMLZ1 Coding Format.

The generic IBMLZ1 compression code word format
is depicted in Fig. 7. The flag, the first bit, is chosen

7 Data Expansion: Data expansion occurs when the size of the output stream generated by the compression algorithm is larger than the size of
input. The maximum compression achievable is bounded below by the entropy which is data dependant. In addition, there are factors that drive
the coded size away from optimal: coding overheads; and imperfect models. The worst case expansion factor for IBMLZ1 is 12.5%.
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similar to Jackson's [ JacRac76]. When the flag bit is
a '0, the next field is the 8-bit original byte. The
existence of this flag bit accounts for the worst case
12.5% expansion’ for IBMLZ1. When the flag bit is a
'1", the next field is a variable-length length or control
field. If the length field is used, the next field is the
displacement. The displacement field is a pointer to
the history buffer where the head of the match is

located. If the control field is chosen, there might be-

0, 1, or multiple extension fields. The control field is
assigned for several important purposes. It allows
messages to be sent away before the end of sending
the compressed stream. Or, it can be designated for
future decoder redirection. The displacement field is
not encoded. Study [ Karnin91] shown encoding the
displacement has limited benefit to restricted types,
such as PC object codes. For broader applications,
and for hardware simplicity, the decision was made
not to encode the displacement field.

The length/control field of IBMLZ1 has 286 code
words (Fig. 9), grouped in five buckets. The bucket
scheme appeared in the SUNSET [ Lang84b] gray-
scale compression algorithm, JPEG, and other coding
schemes. For the first four buckets, the number of
code words in each bucket grows in the power of 2
on a lop-sided tree. Those 30 code words in the first
four buckets approximate the observed exponential or
Laplacian distribution.

Fig. 8 shows analytical results of a simpler distrib-
ution from one test case. There were 738 count of
zero match found in the CAM; 7623 count of match
length=1; 3000 count of match length=2; 798 count of
match lengh=3; and so on. The exponential distrib-
ution (Laplacian or Fractal) of code length is clearly
shown.
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/****ﬁ*#************#************************************l

/++% Fast IBMLZ] with Compression Performance Analysis =/

/***********i********I**i*****ﬁ********i*****i*******ki**/

Match Match Coded

Length  Count Bits
0 738 6642
1 7623 68607

__ Matched symbols are: 4514

Match Match Coded Probability
Length Count Bits Entropy
2 3000 6000 0.66460 0.39174
3 798 1596 0.17678 0.44195
4 301 1204 0.06668 ©.26050
5 159 636 0.03522 0.17004
6 87 348  0.01927 0.10981
7 a4 176 0.60975 0.06512
8 22 132 0.00487 0.03743
9 31 186 0.00687 ©.04935
10 13 78 0.00288 ©.02431
1 9 54 0.00199 ©.01788
12 10 60 0.00222 ©.91954
13 4 24 ©.00089 ©.00899
14 4 24  0.00089 ©.00899
15 4 24 0.00089 ©.00899
16 2 16 0.00044 ©.00494
17 2 16 06.00044 0.00494
18 1 8 0.00022 0.00269
25 1 8 0.60022 0.00269
33 1 12 0.00022 0.00269
38 1 12 0.00022 0.00269
92 1 12 0.00022 0.06269
98 1 12 0.00022 0.06269
109 1 12 0.00022 0.00269
130 1 12 0.00022 9.00269
131 1 12 0.60022 ©.00269
132 1 12 0.00022 6.00269
176 1 12 0.00022 ©.06269
271 1 12 0.00022 ©.90269
286 12 144  ©0.00266 0.02274

Entropy: 1.67951 bits/symbol

Figure 8. Example: LZ1_FAST Coding Efficiency Analysis.

Match Length Statistics Empirical Study

Forty-four test cases of expected data were chosen as
the IBMLZ1 algorithm development test suite. They
encompassed data bases, programs, object code,
system code, and documents in two languages from
major applications on VM, MVS, RS6000, and PC.
K_code [ Karnin91 ], was used as basis for the exper-
imental length/control code study:
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16 256 16 recursion

285121 K_tode
1imited match length infinite match length

Figure 9. 286LZ1 and K_code for I Length code assignment.

< K _code > :=

bucket bucket code words
prefix size

2} 2 2..3

10 4 4 ..7

11 8 8 ..15

1110 16 16 .. 31

11110 32 32 .. 63
111110 64 64 .. 127
1111110 128 128 .. 255
11111110 256 256 .. 511
512 512 .. 1023
1624 1024 .. 2047

Figure 10. K_Code for Length and Control Field.

< 286LZ1 » :=

bucket bucket code words
prefix size
0 2 00 .. 01
10 4 100 .. 111
110 8 110600 .. 110111
1116 16 11100000 .. 11101111
1111 256 111160600000 .. 111111111111

Figure 11. 286LZ1 Length and Control Field. Five code buckets
are used: the prefixes are "0", "10", "110", "1110", and
"1111"; the number of code words are 2, 4, 8, 16, and
256 in the five buckets respectively.

Key New Observations: The empirical experiment of
analyzing the match-length distribution over the
44-case suite and also over large volumes of data
revealed two important observation.

1. If maximal match length is limited to 192, the
increase in total compressed bytes of the test suite
is less than .5% when compared to the maximal
match length = 2048 case.

2. For maximal match length = 286, the match length
distribution is Laplacian till match length about 27,
then appear to be flat.
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The 192 match-length limit observation was rather
encouraging! It suggested that a smaller set of length
codes would suffer only insignificant loss compared to
the set with 2048 length codes. The shorter match
length presented considerable (logic) savings to the
compression-decompression checking mechanism. In
addition, short match length corresponds to lower
latency for the storage system controller (or decoder
latency) where the response time is crucial. The
maximal match length for the final IBMLZ1 is 271

(Fig. 11).

The second observation was extremely crucial to the
algorithmic decision! Since the distribution is
Laplacian, it indicated the more complex adaptive
arithmetic coding, in this case, could do only slightly
better than the Huffman coding. The more complex
adaptive coding scheme is hence ruled-out.

The second part of the second observation led us to
significant coding simplification and fast hardware
operation! The observation suggested that all K _code
of length greater than 27 could be lumped into a single
bucket. The resulting 286LZ1 has 286 code words in
five buckets. 270 of them are used for the length
description from 2 to 271; 16 of them are assigned for
controls and end-of-file.

Since there are only five buckets of code words, the
encoding and decoding can be sped up by precom-
puting all possible code lengths. For instance, the
parser is on the speed critical path for decoding, we
can compute all five possible length variations and
archive multi-byte decompression in a machine cycle!

There were questions raised regarding the theoretic
reasoning for the second observation above. More
analyses can be made to classify the distribution. A
somewhat relevant study is in Cleary-Witten's paper on
Partial String Matching
[ CleWit84 ]. The experimental results showed the the
optimal model order for compressing text, program,
numeric data, binary code, grey-scale image, and so
on.

IBMLZ1 Compression Results

Fig. 13 shows the compress-to ratios of IBMLZ1 vari-
ants. The IBM-1K and IBM-2K are the results of
using 1K and 2K history buffer respectively. The
IBM-1KF and IBM-2KF are the results of the fast-
attack [ CKCG95 ] versions that aimed at improving
the initial coding efficiency when the history buffer is
partially filled. The block size denoting the size limit
where the compression is restarted. The blocking
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effect appears on channel to storage controller, where
4K is the most typical block size, the next common
block size is 2K. CAM of 1K history buffer is about
60K equivalent-cell area, Fig. 13 suggested a 1K
CAM instead of 2K will yield good compression and
will keep the circuit size down.

Figure 12. IBMLZ1 COMP Chip Photo for Disk Array Controller.

Compressed-To Ratios
vs. Input Blocking Sizes

48

44 i IBM-1K
% 42 \\ IBM-2K
£ ol S\ "
;? o \ IBM-1KF
g 36 “ IBM-2KF
§ 34 \%ﬁ

32

30

T T T T T
512 1024 2048 4096 8192
Block Size

Figure 13. Compressed-To Ratios over 44 Test Cases.

IBMLZ1 Compression Technology for Storage
Controller

A family of compression chips based on IBMLZ1
compression algorithm were developed. A 0.8-micron
75,000 gate-array achieved 40 MB/sec throughput
[ Latt93 1; a 0.5-micron version is expected to reach
50 MB/sec throughput. Fig. 12 depicts a comprehen-
sive compression sub-system chip with the com-
pression macro imbedded. The chip is operating at

August 14-15,1995

40 MB/sec and is pipelined between the ESCON and
the Cache unit for the array storage controller. As
mentioned earlier, the pipelined operation yields the
maximal system benefit.

The log-structured storage management provides
efficient integration of compression for the storage
controller. In CKD (Count Key Data) environments,
individual blocks of data are frequently updated. As
compression effect is data dependent, the newly com-
pressed data cannot be guaranteed to fit in the space
left by the old data. The log-structured technique for
dealing with this unpredictability is to not attempt
updates in place, but to collect changed data in a log,
and write it to DASD in free space, maintaining a
directory which maps the logical address of the data to
the actual physical location. The directory can then be
reviewed periodically to find sparsely populated areas
on disk and collect the space for re-use.

Conclusion and Future Development

The IBMLZ1 algorithm and technology was designed
for high compression/decompression throughput with
efficient hardware implementation, high reliability, low
system overhead, and robust compression. Data integ-
rity and reliability are ensured by coupled
compression-decompression checking, scrubbing opera-
tion, and extensive build-in checkings. Extremely low
CPB=1 ¢ compression and decompression have been
achieved. The extremely high
compressing/decompressing throughput of 30 MB/sec
— 50 MB/sec allows transparent mode of operation and
hence achieved minimal system overhead. The
IBMLZ1 algorithm compresses well over the VM,
MVS, RS6000, and PC test cases. Future tasks are:
developing format compatible lower CPB and low-
overhead data integrity checking architectures.
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