

The First Superscalar 29K[™] Family Member

Brian McMinn

Hot Chips VII August 14, 1995

1

Presentation Outline

- Product Overview
- ◆ Block Diagram
- Operation and Pipeline
- ◆ Instruction Tracing and Debug
- ◆ Relationship to K86[™] Family
- Conclusion

Product Overview - Goals of Design

- ◆ Software compatible with existing 29K[™] Family members
- ◆ Fast execution of existing binaries and use of existing compilers
 - Superscalar implementation
 - Out of order execution
 - Register renaming
 - Speculative execution across branches
- Constrained cost & power
- Hardware assist for software debug required
- ◆ Speeds to 100 MHz internal, 33 MHz external
- ◆ Pin compatible with AM29040[™] Microprocessor

3

1.1-04

Product Overview - Family Features

- ◆ Large general purpose register set
 - 128 local registers in on board stack cache
 - 64 global registers
- Fast and predictable interrupts
 - Simple interrupts handled in freeze mode
 - Complex interrupts possible after saving some state
 - Exceptions taken in program order despite out of order execution
- Hardware support for big and little endian systems
- ◆ Dual MMU structure
 - Two TLB's with one prioritized over the other
 - Each TLB has independent page size from 1 Kbyte to 16 Mbyte
 - Supports huge virtual space AND flexibility for small segments

Block Diagram

1.1-06

Operation - Cache Load

♦ 8K Byte Instruction Cache

- One bit branch prediction cleared when block is first loaded
- One valid bit per 4 words

◆ Cache loaded from memory in 4-word blocks

- Block aligned fetch rather than word of interest first
- Predecode logic encodes read/write count and size of result

On subsequent execution of block (cache hit)

- Branch prediction information may redirect fetch unit
- Potentially speculative fetch and dispatch continues
- Branch prediction information sent to decode
 - » will be validated when branch is executed

Operation - Decode

- Decode cache block as a unit
- Allocate reorder buffer entries
 - Maintains architectural state
 - Eliminates false dependencies
 - Increases parallelism for non-superscalar code
- Check data dependencies, locate operands
 - Read from the register file
 - Forwarded from results not-yet-written stored in reorder buffer
 - Represented by a "tag" when not yet available
 - » Based on the tag, the operand will be forwarded directly to the requiring function block when it becomes available
 - » Use most recent value if more than one copy

7

1.1-08

Operation - Dispatch

- Dispatch instructions in order
- ◆ Allocate reservation station entry
 - Two reservation station entries per function block
 - FIFO allocation within each function block
 - Place instruction and operands (or tags) in reservation station
- Can be held by
 - One instruction per function unit per clock cycle
 - Reservation station of a unit may be full
 - Lack of register file read ports (4 ports implemented)
 - Reorder buffer full
 - Special cases which require serialization

Operation - Execute

- ♦ Reservation station entries serviced in FIFO order
- ◆ Wait for forwarded data (if required)
- Various function units are completely independent
 - Instructions may execute out of order
 - Single cycle latencies except for two cycle pipelined multiply
- Arbitrate for a result bus
 - 3 result busses available
 - execution will block if results can't be returned
- Return both the result and the corresponding tag
- Tags compared in each reservation station for forwarding to next cycle

9

1.1-10

Operation - Writeback

- Drive result from function block to reorder buffer
- Based on previous tag compare result may be forwarded to other reservation stations
- ◆ Recover from incorrect branch predictions
 - Redirect instruction fetch
 - Update prediction information in cache
- Speculatively complete loads that hit in the data cache

Operation - Retire

- Results retired from Reorder Buffer in program order
- ◆ Up to 4 reorder buffer entries can be retired at once
 - Two writeback paths to register file allow two results to be written
 - One branch and one store can also be retired
- ◆ Handle exceptions in program order
- Update architectural program counter
 - invalidate speculative results for incorrect branch prediction
- Release store operations to cache and load-miss operations to external interface

11

1.1-12

Operation - Loads and Stores

- ◆ 8 Kbyte Snooping Data Cache
 - physical addressing, MOESI protocol, buffered copyback
- ◆ Load-hit is a single cycle operation
 - completes immediately, but results considered speculative
- Load-hit can bypass deferred stores
 - Hardware dependency check prevents read after write conflict
- All stores and all loads that miss in the data cache wait for retirement of corresponding instruction
 - no speculative external data transactions
- Reorder buffer fills with subsequent results while waiting on external load or store

Superscalar Tracing - The Problem

◆ Desire to provide a full trace of internal instructions

Don't want to

- Perturb the system by slowing down the processor
- Create a special bond out chip
- Require ICE to track instruction cache contents

During each external clock cycle, can retire

- up to 16 instructions
- up to 4 taken branch instructions

Snooping data cache

- Task list and control can be passed via snooping
- There is no requirement to EVER initiate an external transaction!

13

Traceable Caching[™] System

1.1-14

Advanced
Micro
Devices

Traceable Caching™ System

◆ Tracing Processor is off the shelf standard part

- Placed in trace mode during system reset
- Runs in lockstep with Master Processor
- Pins which Tracing Process does not need for input are redefined to contain information about internal state

Trace analysis hardware

- Captures internal information for display and analysis

Compression

- Trace is compressed to fit available bandwidth
- No need to look at program text to interpret trace
- Flexible on chip breakpoint hardware reduces need to trace data activity

15

1.1-16

Relationship to K86[™] Family

An early model of this product was the basis of the K86 Family

 Some of the same people contributed to both the architecture and the design of both chips

Targeted at much lower cost system

- Significantly lower transistor count and area
 - » Provides integer multiply, but not floating point unit
 - » No interaction between instruction and data caches
 - » Much simpler instruction decode
- slightly lower performance
- much lower sticker price
- ◆ Doesn't boot Windows '95 (or even DOS)

A Superscalar 29K Family Member

- Maintains compatibility with existing 29K compilers and executables
- ◆ Retains full in-order programmer's model even though execution can be out-of-order
- ◆ 100 MHz internal speed in 0.4 micron technology
- **♦ Low power consumption**
- Designed for high performance with low sticker price rather than highest performance at any price

17