

THE SUPERSCALAR HARDWARE ARCHITECTURE OF THE MC68060

Joe Circello Advanced Microprocessor Architect Motorola High-End Microprocessor Division

	(M) MOTOROLA
Hot Chips VI August, 1994	SEMICONDUCTOR PRODUCTS SECTOR

Application of Superscalar Design Techniques to CISC Instruction Sets

- Implementation is complicated by:
 - · Variable-length instructions
 - Multiple instruction formats
 - · Traditional "condition code" indicators
- · For well-established architectures,
 - Simple recompilation may be an unacceptable solution
- Superscalar hardware architecture must provide an acceptable performance improvement on existing object code

The Superscalar Microarchitecture of the MC68060

- · Independent and decoupled four-stage pipelines
 - · Instruction Fetch Pipeline (IFP)
 - IAG instruction address generation
 - IC instruction fetch cycle
 - IED instruction early decode
 - IB instruction buffer
 - Operand Execution Pipelines (OEPs)
 - DS decode instructions + select components of operand address
 - AG operand address generation
 - OC operand fetch cycle
 - EX instruction execution
 - OEPs consist of two pipelines operating in lockstep
 - Primary OEP (pOEP) & secondary OEP (sOEP)

Hot Chips VI August, 1994

SEMICONDUCTOR PRODUCTS SECTOR

MC68060 Block Diagram

MOTOROLA

Conceptual Model of the Operand Execution Pipeline

- · Each execution pipeline consists of two "compute engines"
 - · Operand address generation
 - Instruction execution
- · Each compute engine follows the RISC model
 - Register file with dual read ports + ALU datapath

Resources = f(Base, Index, Address_result, A, B, Execute_result)

Hot Chips VI August, 1994 MOTOROLA =

SEMICONDUCTOR PRODUCTS SECTOR

Conceptual Model of the OEPs (cont.)

- This model is the foundation of the 68060 microarchitecture
- Six key elements which support the model:
 - "Early decode" function within the IFP
 - Loading of fetched instruction stream into the FIFO Ibuffer
 - · Superscalar dispatch algorithm located in the DS stage of the OEP
 - Result forwarding within the n-tuple of issued instructions
 - "Dynamic execution relocation" between the two compute engines
 - Optimized branch execution including 256-entry Branch Cache

"Early Decode" within the IFP

- Table lookup scheme
 - · 16-bit opcode produces a decode longword
 - Identifies all the resources required by the instruction {memory, immediate, register} operands
 - · Allows efficient evaluation of the dispatch algorithm
- Additional information to control the DS stage of the OEP
 - · Instruction length
 - Operand type and address generation
- Fixed-length decode
 - · Translates various instruction formats
 - · Single definition which is used by the OEPs

Hot Chips VI August, 1994

SEMICONDUCTOR PRODUCTS SECTOR

Loading Fetched Instruction Stream

 Given a variable-length ISA and the ability to issue multiple instructions, how is the next set of instructions loaded into the execution pipeline?

The 68060 solution is the use of a FIFO instruction buffer

- Packaged as machine instructions
 - · Use instruction length from early decode
 - Each buffer entry is 1 instruction
- FIFO buffer implemented with three read ports
 - If current pOEP instruction is location i of FIFO,
 then FIFO reads at locations (i+1), (i+2), (i+3)
 - Allows the {(i+1),(i+2)} or {(i+2),(i+3)} pair to be sent to OEPs

MOTOROLA

Superscalar Dispatch Algorithm

- Evaluates a series of tests (DS stage)
 - Using early decode information, potential conflicts analyzed
- Data hazards between pOEP and sOEP
 - Inputs to sOEP must not be outputs from pOEP
 - If hazard is detected, then the sOEP instruction cannot be issued
- If all tests successful, both instructions issued to the AG stage
- If any test fails, only the pOEP instruction is issued

MOTOROLA SEMICONDUCTOR PRODUCTS SECTOR

Hot Chips VI August, 1994

Result Forwarding within the Dispatched Group

- · In 2-operand ISAs
 - · Simple assignment instructions used extensively
 - · Example:

mov.l (d,A0),D0 # move memory-to-register add.l D1,D0 # register-to-register operation

Data hazard involving D0

- Avoid the detection of the data hazard
 - Rename the operand {destination = source} for simple assignments
- · 2 heavily-used constructs benefit:

mov.l <ea>,Rx # Rx can be either source and/or destination <op>.l <ea>,Rx mov.l Rx,<mem>

Dynamic Execution Relocation

- · For most opcodes,
 - DS/AG engine used for address generation
 - OC/EX engine used for instruction execution
- · Certain opcodes "executed" by DS/AG engine
 - Register renaming techniques
 - · Results available with no pipeline stalls
- '060 adds third category
 - · Opcodes which can be executed by either engine
 - Relocation from OC/EX to DS/AG
 - Allows more effective use of register renaming hardware
 - Minimize pipeline stalls
 - · If no pending register writes to source operands at issue time,
 - Relocate the execution from OC/EX to DS/AG

M) MOTOROLA

Hot Chips VI August, 1994

SEMICONDUCTOR PRODUCTS SECTOR

Optimized Branch Execution

- 256-entry Branch Cache Unit within the IFP
 - Hardware table associating branch PC and target address
 - Organized as 4-way set-associative (4 x 64)
 - 4-state prediction model
- Instruction folding
 - Executes taken branches predicted correctly in 0 cycles
- Pipeline optimized for correct prediction
 - · If mis-prediction, then
 - · IFP & OEPs are aborted
 - · New instruction stream established
- Execution Strategy for Non-Predicted Branches
 - Assumed branch resolution = f(branch direction)
 - If forward branch, then assumed to be not-taken
 - If backward, then the branch is assumed to be taken

MOTOROLA

MC68060 Summary

- Measured Performance
 - 1.2 CPI measured on range of desktop and embedded applications
 - 45-55% of instructions issued as pairs/triplets (existing 680X0 code)
 - 50-65% of instructions issued as pairs/triplets (targeted 68060 code)
 - 68060-50 = 2.5x 3.5x 68040-25; 68060-66 = 2.1x 2.9x 68040-40
- Features
 - · 2.5 million transistors, 0.5u TLM 3.3v process
 - · Interfaces to 5v logic
 - · Supports full, 1/2, and 1/4 speed buses
 - Worst case power dissipation of 3.9w at 50MHz
 - Sampling now; production ramp 4Q94
- Maintains hardware & software compatibility with the largest installed base of 32-bit embedded control microprocessors in the world

SEMICONDUCTOR PRODUCTS SECTOR

Hot Chips VI August, 1994