A 100 Kbit/s Single Chip
Modular Exponentiation Processor

Holger Orup
Computer Science Department
Aarhus University
DK-8000 Aarhus C, Denmark

in cooperation with

DANMARK

JYDSK TELEFON

Outline of Talk

Why modular exponentials 7

Parallel exponentiation algorithm.

High-radix modular multiplication algorithm.
Architecture.

e Redundant carry save representation.

Test and performance.
e Future work.

e Summary.

2.3.1

54

2.3.2

WwWhy Modular Exponentials 7

Public-key crypto systems. (RSA, ...).
Primality test, key generation.

MiM;. ..
(A2 ;= ME mod N

C1C>. ..

My Ms ...
M; = CP mod N [—=2 @

Requirements for this implementation:
64 Kbit/s transmission rate (ISDN).
561 bit operands.

Modular Exponentiation Algorithm

Stimulus: E,M,N,where E>0and 0< M < N,
E=e,_1e,—2...€9. Binary encoded.
Response: X = ME mod N.
Method: X :=1;,Y = M,
fori:=0ton—-1do
ife;=1then X :=(X-Y) mod N;
Y:=(Y-Y)modN;
end;

. __ | 1.5n- Time[Mult](n) average
Time[Exp](n) = { 2n - Time[Mult](n) worst

Faster Exponentiation

e Previous approaches:
Reducing the number of modular multiplications.
Addition chains. High radix encoding of exponent.
Time[[Exp](n) > n- Time[Mult](n).

e This approach:
Reducing the time by performing
two modular multiplications in parallel:
for : := 0 to n— 1 do in parallel
ife;=1then X :=(X-Y) mod N;
#Y : =(Y-Y)modN;
end;
Time[[Exp](n) = n- Time[Mult](n).

Radix 32 Modular Multiplication

e Increasing the speed by reducing the number of cycles in
a serial-parallel multiplication scheme.

Stimulus: A,B,N, where 0 < A, B <2N.
A=a,_qa,_o--aijag. Radix 32, n'= %
Response: S= AB mod N, where 0 < S < 2N.
Method: S := 0;
for i == n’ — 1 downto O do
g := Estimate(S div N);
S 1= 255 4 a;B — 2°gN;
end;

e S has the dual role of a partial remainder and partial product.

o Time[Muit](n) = % Time[Cycle]

233

56

Architecture for Calculating $’ := 255 + a;B — 2°¢N

quotient
estimate

[

12

S and N.

i T T
5
—gN a;B < A
(—qN)s (—qN)c (az‘B)s (az‘B)c
&)
T !
<)
T 1
&
7 7
&)
s St
... Architecture

Multiples —gN and aB in redundant carry save representation.
Accumulator S in redundant carry save representation.

Quotient estimation by inspecting 12 most significant bits of

e Carry completion adder converts redundant carry save
representation to non-redundant binary representation

(not shown).

Critical Path: Quotient estimate +

generation of multiple 4+ two carry save additions.

234

57

Algorithmic Improvements

Parallel exponentiation:

n- Time[Mult](n) vs. 2n - Time[Mult](n)

The architecture is pipelined for simultaneously performing
two multiplications, Time[[Cycle] = 2 - Time[[ClocK].

Radix 32 multiplication:

%- Time[[Cycle] vs. n- Time[Cycle].
Redundant representation of intermediate operands:
The addition time is independent of n.

Test and Performance

° ESQ, 1.2 um double metal layer CMOS.

e 304,000 transistors, 210 mm?2.

e Yield 8%.

e Functionally correct, 25 MHz clocking frequency.

e Power 2.5 W at 25 MHz.

o Time[[Exp](561) = 561 ~igi-2-4o ns = 5.0 ms.
Actual time is less than 5.5 ms, corresponding to a
throughput of more than 100 Kbit/s.

235

58

2.3.6

Photo of Processor

Future Work

Increasing the radix without increasing
the multiplication cycle time.

Montgomery's modular multiplication algorithm.

It is possible to make the complexity of quotient
determination independent of the choice of radix.

The multiplication cycle time can be reduced to
the delay of a 4-2 adder.

Summary |

e Increased speed obtained by algorithmic improvements.
o Parallel exponentiation algorithm.

e Radix 32 modular multiplication algorithm.

e Intermediate operands in redundant carry save representation.

e Further improvements are possible.

2.3.7

59

60

