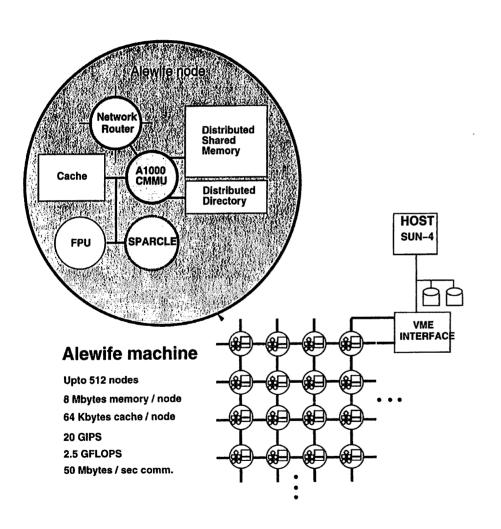
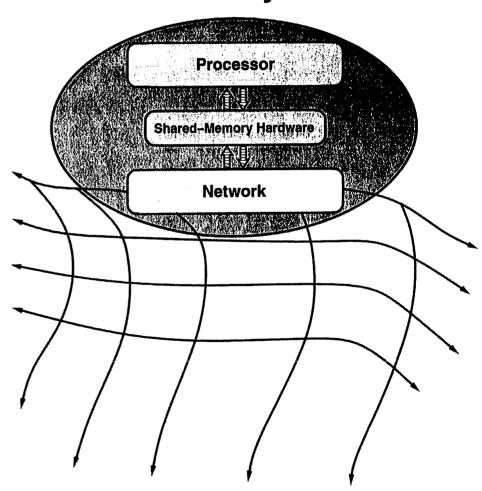
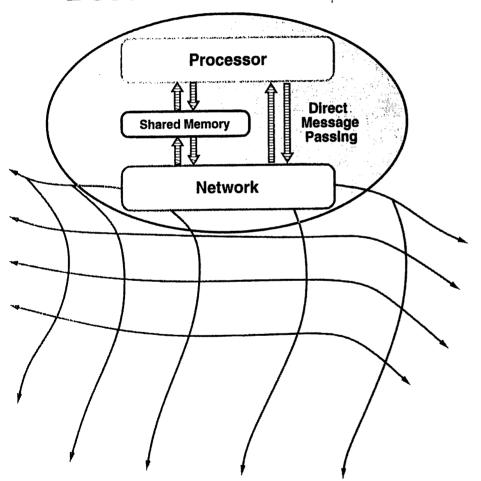

The Alewife-1000 CMMU:


Addressing the Multiprocessor Communications Gap.

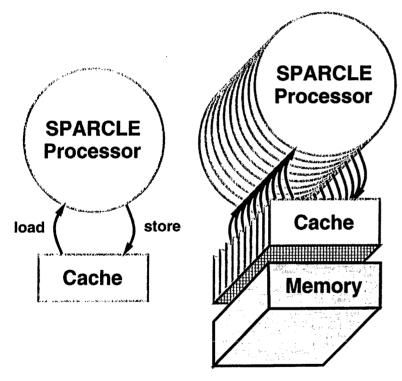


John Kubiatowicz


Massachusetts Institute of Technology Laboratory for Computer Science kubitron@lcs.mit.edu



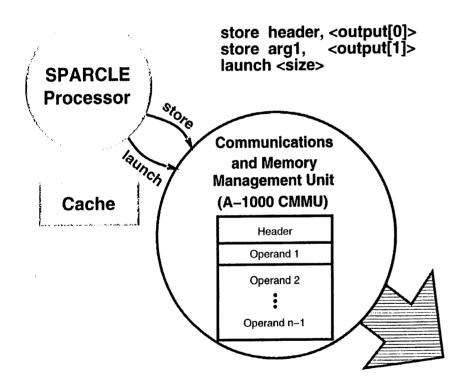
Shared Memory Machine


Best of BOTH worlds

Outline

- Motivation
- Mechanisms
- Performance Data
- Implementation
- Status and Conclusions

Shared Memory Interface



Single Coherent View Of Memory

Properties of the Shared Memory

- Data is physically distributed.
- Each node has 64 Kbytes of hardware-managed cache for shared and private data.
- Rapid context-switching and software prefetch permit latency tollerance.
- Cached d\(\frac{1}{2}\)ta is kept coherent through a combination of hardware and software techniques.

Message Output Interface

Launch instruction takes one cycle and is *atomic*.

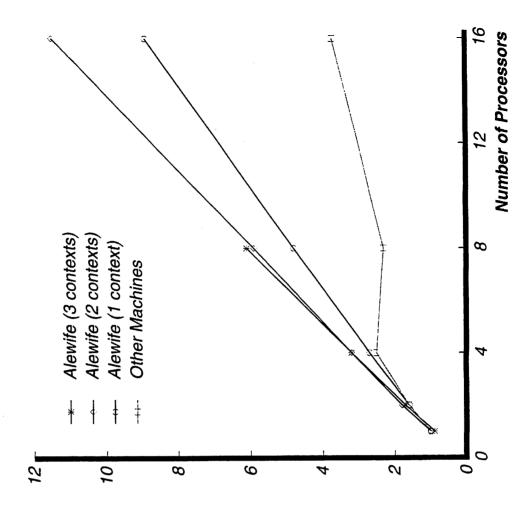
Properties of the Message-Passing Interface

- Direct, user-level access to message interface.
- Efficient generation/consumption of short and long packets.
- Integral DMA for block transmission.
- Support for "typical" multi-packet I/O traffic.
- Deadlock-free control of the network.

Cycle Counts

Action	Processor Cycles	
Load Instruction:	2	
Store Instruction:	3	
Private cache-miss penalty:	9	
Shared Local cache-miss penalty:	11	
Context-switch time (data request):	14	
Directory-read (cached):	5	
Directory-write (cached):	6	
Message-send	8 (processor time)	
(2 words at user-level):	11 (to network)	
Message-receive		
(null active message at user-level):	35	
Fast Task Dispatch:	$88 + 1.1 \times distance$	

Is fast messaging expensive?


interfaces for seamless integration with the network and memory system.

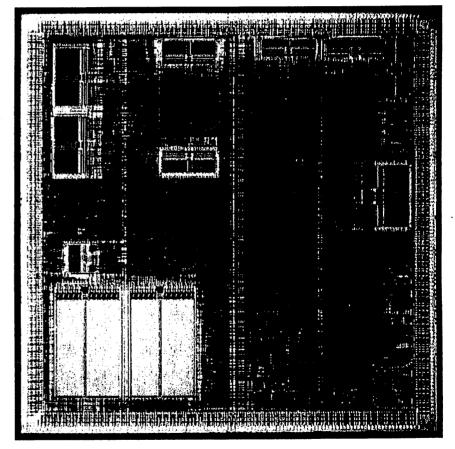
 Multiple "flavors" of uncached load and store instructions.

A pipeline extension mechanism.

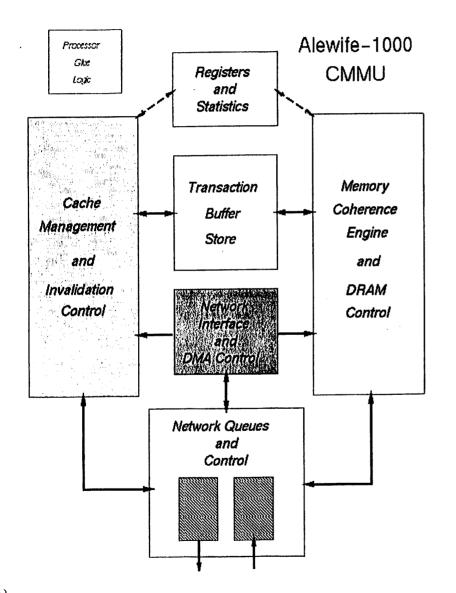
A spare register set.

Fast, user-level vectored interrupts.

Remote Read Latecies at 30Mhz (Actual Measurements)


Data status	Total Latency in Processor Cycles	CMMU cost
Clean	46.6 + 2.3 × distance	16.4 cycles
Dirty in home	51.5 + 2.5 × distance	23.2 cycles
Dirty in third	78.0 + 2.3 × distance	30.5 cycles

Implementation of CMMU


The A-1000 CMMU is implemented in the LEA300K hybrid gate-array process from LSI Logic.

- 95,000 gates and 100Kbits of SRAM.
- Memories were produced with LSI compiler.
- Core logic was synthesized from LES (by LSI Logic) and optimized with Berkeley SIS.
- Critical circuits were designed directly with schematic editor.
- Hybrid simulation for verification.

A-1000 Die photo

- Die size: 15mm × 15mm
- 95K random gates.
- 100K bits of SRAM (regular structures).

Alewife-1000 CMMU

- O Processor and Cache Control
- C Transaction

 Buffer
- Asynchronous Network

- O Memory and DRAM Control
- C Registers and Statistics
- IPI Message Interface

Sizes in Gates:

Cache Control:	12688	13.7%
Coprocessor Pipeline:	2179	2.4%
Memory:	16085	17.4%
Dram Control:	7385	8.0%
Transaction Buffer (state):	14640	15.8%
Transaction Buffer (data):	1650	1.8%
Livelock Removal:	1886	2.0%
Message Interface (Input):	5527	6.0%
Message Interface (Output):	4804	5.2%
Network:	5647	6.1%
Statistics:	12464	13.5%
Other Registers:	7560	8.2%
Totale	OOE 1 E	

Total: 92515

Status of the Alewife Machine

[To be updated much closer to final deadline]

First run of silicon for A-1000 CMMU:

- 16-node machine operational since June 17.
- Runtime system and compilation environment supports C and Mul-T (a dialect of LISP).
- A number of large kernels and benchmarks have been run.
- Small number of bugs in first run of silicon.

Conclusion

- Efficient communication mechanisms are important in a multiprocessor.
- The Alewife-1000 CMMU integrates *both* message-passing and cache-coherent shared memory in a single hardware framework.
- Uniprocessor pipeline designers can provide simple "hooks" for efficient multiprocessor interfacing.