Routing Chip Set for Intel Paragon™ Parallel Supercomputer

Roger Traylor
Dave Dunning
Intel Corporation

- The Paragon System
- Paragon Network Fabric
- Network Interface Chip (NIC)
- High Speed Signaling
- Mesh Routing Chip (MRC)
- Summary

The Paragon System

A scalable parallel supercomputer

5-300 MFLOPS
66-4096 processors
Internode communication
bandwidth > 200 MBytes/s

intel*

Paragon Network Fabric

Topology

- 2D Mesh
- All data channels 16 bits wide
- Bidirectional 4-way transfer
- Interface to processor via NIC

Performance

- All channels > 200 MBytes/s
- Bisection bandwidth
 12.8 GBytes/s max.

intel'

Paragon Network Fabric

2D Mesh Motivation

- Physically easy to build
- Easy to expand
- Proven in Touchstone Delta
- Short, point-to-point electrical connections
- Fast

Self-timed logic

- Precludes all high speed clock distribution issues
- Scalable to any practical size mesh

ألطint

Network Interface Chip (NIC)

· What is it?

- Interface between nodeboard data bus and MRC
 - Data funnel 64 bits <--> 16 bits
 - Protocol conversion
 Synchronous <--> Self-timed
 - Data integrity via CRC and parity
 - Rate buffering via FIFO buffers

intel°

Network Interface Chip (NIC)

intel°

Network Interface Chip (NIC)

Synchronous <--> Self-timed Interfaces

- Use FIFO flags as basis of interface
- Synchronizing flags ("Doctor, it hurts when I do this ...")
 - Use clean flags (grey code counters)
 - Synchronize infrequently (only at boundaries)
 - Synchronize thoroughly with fast flip flops

intel°

Self-timed Pipeline Methodology

- Internally, 2 cycle interlocked handshake
- · Externally, interlocked or streaming

intel*

...C

inte

Network Interface Chip (NIC)

Self-timed Pipeline Methodology (cont.)

Self-timed Pipeline Methodology (cont.)

Physical implementation

 User defined hard macros and careful placement maintain isochronous regions

Performance

- 72 bit pipelines can run at1.2 GBytes/s
- External streaming mode> 300 MBytes/s

intel*

Network Interface Chip (NIC)

Self-timed Pipeline Methodology (cont.)
• Physical Implementation

Process and Technology

- 1.0 mm CMOS standard cell
- 299 pin CPGA
- 3W max
- Rail-to-rail I/O switching
- Die 15 x 15 mm

intal*

High Speed Signaling

- 75 Ω traces/wires were chosen
 - Good match for CMOS
 - Lower power required
- Multiwire circuit boards
 - Good wire length matching, minimal signal skews
 - Very tight impedance control
- NIC signals are source terminated with discrete resistors
- MRC signal impedances matched by tunable strength output drivers

High Speed Signaling

Impedance Tunable Output Drivers

- MRC is Pad limited, large Pads do not affect die size
- PBIAS, NBIAS control pull up and pull down strengths respectively intel

Mesh Routing Chip (MRC)

Physical Description

- 325 pin ceramic PGA
 - Interstitial pins, 70 mil. spaced
 - 1.75 inches per side
 - 0.8 mm Intel process
 - Full custom die, 320 mils/side
 - 2 watts max.
- Completely self-timed component

Mesh Routing Chip (MRC)

Architecture

- 5 input ports, 5 output ports
- Each port contains 16 data bits, 2 parity bits, 1 tail, 1 request, 1 acknowledge
- Displacement based addressing
- Routes X before Y
- Hardware broadcast in rows, columns or rectangles
- Some diagnostic/error detection capabilities

intel*

Mesh Routing Chip (MRC)

Block Diagram

B = Broadcast cell, A = Arbiter cell, S = Stripper cell, D = Decrementer cell

int_el°

Mesh Routing Chip (MRC)

Block Diagram Description

5 major functional blocks

- Broadcast cells: Allow messages to select a path or fork in multiple directions (broadcast).
- Arbiter cells: Arbitrate between two messages that require one path (fair arbitration).
- Stripper cells: Strip off the first flit of messages that pass through it.
- Decrement cells: Decrement the first flit of messages that pass through it.
- Pipe stages: Fall through FIFO stages that buffer the flits of the messages (not drawn in diagram).

intel*

Mesh Routing Chip (MRC)

		1
		ŀ
		i
		- 1
		1
ļ		
ŀ		
1		

intel.

Mesh Routing Chip (MRC)

Performance

- 200+ MByte/sec at all ports simultaneously
- 40 nsec input to output latency (no change in dimension)
- 70 nsec input to output latency (changing X to Y)
- · High speeds are achieved by KISS principle:
 - Keeping each pipe stage simple
 - Minimal number of buffers per stage
- I/O is fast due to:
 - Data streaming
 - Careful attention to between chip analog issues

intal*

Mesh Routing Chip (MRC)

Interlocked vs. Streaming Handshakes

- Data streaming allows for much higher data rates
 - No waiting for return acknowledge
 - Independent of physical space (propagation delay) between chips intel
 - Can be extended to any streaming depth

Summary

Hindsight

- Low voltage signaling; 3.3 volts?1.0 volts?
- Faster slew-rate output buffers
- Error correction code in NIC
- Variable streaming depth
- Adaptive routing?
- Virtual channels

intel*

Summary

- High speed self-timed logic was implemented using standard cells and standard vendor tools (NIC).
- Off-the-shelf technologies were made to run fast using self-timed techniques.
- Two generic simple chips allow for high speed scalable interconnect networks.

intel°