The Vector Coprocessor Unit (VU) for the CM-5

Jon Wade, Zahi Abuhamdeh, Dan Cassiday, Mahesh Ganmukhi, Jeff Hill, Bob Lordi, Margaret St.Pierre, Scott Smith, Monica Wong, Shaw Yang, Bob Zak: Thinking Machines Corporation

David Bural, Don Steiss, Bob Farrell, Simon Koval, Maria Gill, Ken Cyr: Datapath VLSI Products Design, Texas Instruments Inc.

Hot Chips IV Symposium August 11, 1992

Thinking Machines Corporation

M Proc

Presentation Outline

- Design Objectives
- Architecture
- Implementation
- Performance

Design Objectives

- Maximum sustained MFLOPS/\$
 - * memory bandwidth
 - * FLOPS (IEEE)
 - * instruction bandwidth
 - * low startup cost
- System-level diagnostics
 - * test/debug support

- direct fast-page DRAM support, strided and indirect memory & register addressing
- high performance FPU -USIM TX
 vectorized instructions
- vectorized instructions
- minimize bubbles in pipeline
- JTAG, full internal scan

Thinking Machines Corporation

Design Objectives (cont.)

- System Configurability
 - support future SPARCs
 - memory size
 - expandable

- use MBus interface
- 4 to 64 Mbit DRAMs
- 2 to 8 VUs per node

- Software
 - * compilers & libraries
- support data parallel programming model

- Time to Market
 - * existing technologies
 - * existing designs
 - thorough verification
- TI EPIC-2 process, CPGA, DRAMs
- Ti megacells, gate-array
- transistor, gate, arch & system level

CM-5 Processing Node with Vector Units

Execution Model

- memory mapped into MBus address space
- · remote accesses
 - * memory
 - * Vector Unit state (register file, control state)
- · instructions
 - * may be issued to one, a pair or all VUs on a node (decoded from MBus address)
 - * load/store memory base address is decoded from MBus address
 - * instruction is decoded from MBus write data

CM-5 Processing Node Address Mapping

name	lower	upper
main memory	N 0000 0000	N 07FF FFFF
data registers	N 4000 0000	N 4000 01FF
instruction register	N 8000 0000	N 87FF FFFF
read only memory	F FN00 0000	F FN7F FFFF
control registers	F FN80 0000	F FNFF FFFF
NI registers	0 0800 0000	0 080F FFFF

where N is the VU ID number (0 to 7, 8 for common space).

Thinking Machines Corporation

Vector Unit Instructions

- load/store architecture (load chaining)
- · concurrent arithmetic & load/store operations
- single & double-precision FP, 32- & 64-bit integers
- · floating-point (div, sqrt), integer & logical operations
- triadic multiply-adds (floating-point & integer)
- vectorized instructions with strided or indirect addressing of memory & register file, vector lengths from 1 to 16
- elemental masking of load/store & arithmetic functions

Thinking Machines Corporation

Vector Instruction Format: Short

VU Register File Addressing

- · Vector Registers
 - e.g. 4 vector registers: 16 x 64-bit, 16 x 32-bit elements 8 vector registers: 8 x 64-bit, 16 x 32-bit elements 16 vector registers: 4 x 64-bit, 8 x 32-bit elements
- Arbitrary Base Address & Striding wrap around ends of register file, negative striding
- Indirect Addressing for Operand-1 arbitrary address sequence

Thinking Machines Corporation

Vector Instruction Format: Long

Long format extends the 32-bit short format with an extra 32 bits. This is further decoded to specify these operations and modes:

- immediate operands (integer or floating-point)
- arbitrary memory stride
- arbitrary register base addresses and strides
- indirect addressing of memory & register file
- change default vector length
- vector mask conditionalization control
- · arithmetic result exchange between paired vector units

Technology Summary

Number of Transistors

Die Size

Package

Operating Frequency

Power Dissipation

Process Technology

14.7 x 15.8 mm² 50 x620 xus

319 Pin CPGA

40MHz Worst Case

5.0W (typical @ 40MHz)

0.8um CMOS, metal pitch 1st, 2.0um; 2nd, 2.0um

Chip Features (2 Vector Units)

· Peak FP performance

80 MFLOPs (IEEE SP, DP)

· MBus bandwidth

320 MB/s

DRAM bandwidth

320 MB/s

Register file

128 x 64-bit, 256 x 32-bit, 5-read, 3-write ports

DRAM support

16 MB to 256 MB

Thinking Machines Corporation

Vector Instruction Pipelining

The node microprocessor (μP) issues vector instructions. The timing need not be exact. The μP overlaps scalar control computations with vector processing.

Consecutive vector instructions overlap head-to-tail. After the first vector, vector startup time is zero when vector instructions are issued quickly enough.

Benchmark Test Results

This slide will list the performance of the vector unit for several numerical benchmarks.

	MFWP @ 32MAR	% PLAZ
LL #1	48	75%
47	61	96
MARMIT	28	90
MATMULT (VOCSZA)	58	90
- GREGUMAN	? B) 40	62

Thinking Machines Corporation