Advanced Programmable Interrupt Controller (APIC) Architecture PK Nizar Intel Corporation Page 1 # intel. #### **AGENDA** - Limitations of Current Interrupt Management Solutions - * APIC Architecture Overview - * APIC Features Benifits Summary - HOT CHIPS #### LIMITATIONS OF CURRENT INTERRUPT SOLUTIONS Interrupt Controller Access (SPL()) by OS is Major Hot Spot #### LIMITATIONS OF 8259A INCREASE S/W OVERHEAD - * Priority / IRQ Bindings Fixed - * One Interrupt per Priority - * S/W Workaround Prioritization by Early EOI, Explicit masking - * Increased Overhead - * Slow Access in I/O Space - Mask Updates ------5.3 usec 7 or 33m 112 Interrupt Vector Fetch -----3 usec EOI Cycles ------3.1 usec - Timing Loops -----5 -10 usec - HOT CHIPS Page 3 **APIC ARCHITECTURE OVERVIEW** HOT CHIPS intel. #### APIC ARCHITECTURE SUMMARY - * Distributed Architecture - * Dedicated Interrupt Communications Bus - * Programmable Interrupt Priority Model - * High Performance Priority Management - * MP Interrupt Management HOT CHIPS Page 6 #### HIGH PERFORMANCE PRIORITY MANAGEMENT - * APIC MAINTAINS TWO PROCESSOR PRIORITY INDICATIONS - TASK PRIORITY - * Tracks OS Defined Task/Process/Thread Priority - * Updated by Writes to Local APIC's Task Priority Register - Task Switch - Task Priority Changes (e.g. SPL ()) - INTERRUPT HANDLER PRIORITY - * Equal to Priority of Highest In-Service Interrupt - * Handler Can Explicitly Raise/Restore Priority via Task Priority Register - * APIC Tracks Handler Priority Across Interrupt Nesting/Unnesting - * CURRENT PROCESSOR PRIORITY IS MAXIMUM OF THESE TWO - HOT CHIPS - Page 9 ## intel. #### HIGH PERFORMANCE PRIORITY MANAGEMENT - * APIC masks all Interrupts Lower or Equal to the Current Priority Level - Memory Mapped Task Priority Register - * Useful for Synchronized Access of Shared Resources in OS - * Provides Mutual Exclusion - * Faster SPL () / R/LQL () Routines HOT CHIPS #### MP INTERRUPT MANAGEMENT - * Fully Symmetric, Static/Dynamic Interrupt Distribution - * Group Broadcast, Fixed or Lowest Priority - * Focus Processor concept - * Logical or Physical Addressing - * Flexible Inter-Processor interrupts - * Supports Tasks Migration and Interrupt forwarding Page 11 HOT CHIPS ### **APIC FEATURES BENEFITS SUMMARY** | Features | Benefits | |-----------------------------------|--| | Programmable Interrupt Priority | OS Customizable Priority Model | | CPU/Task Priroty Tracking | Reduces Software Overhead Faster SPL() Routnes | | 32-bit Memory Mapped
Registers | Posted Writes; Performance Boos | | APIC Bus | Scalabity in MP Systems | | Dynamic Interrupt Distribution | Load Balancing in MP systems | | Focus Processor | Improves Interrupt Latency | | I | , | = HOT CHIPS :