

Advanced Programmable Interrupt Controller (APIC)

Architecture

PK Nizar Intel Corporation

Page 1

intel.

AGENDA

- Limitations of Current Interrupt Management Solutions
- * APIC Architecture Overview
- * APIC Features Benifits Summary

- HOT CHIPS

LIMITATIONS OF CURRENT INTERRUPT SOLUTIONS

Interrupt Controller Access (SPL()) by OS is Major Hot Spot

LIMITATIONS OF 8259A INCREASE S/W OVERHEAD

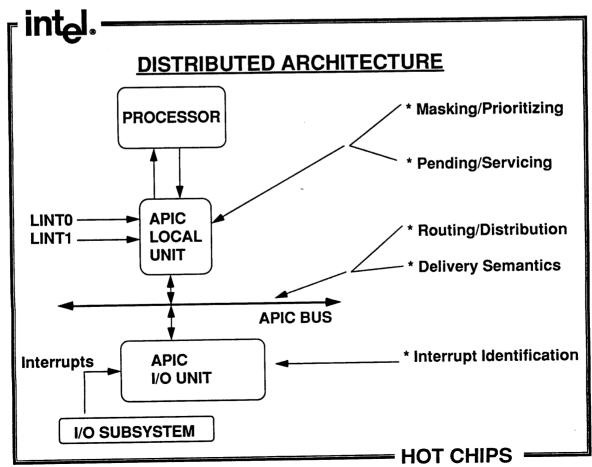
- * Priority / IRQ Bindings Fixed
- * One Interrupt per Priority
- * S/W Workaround Prioritization by Early EOI, Explicit masking
- * Increased Overhead
- * Slow Access in I/O Space
 - Mask Updates ------5.3 usec 7 or 33m 112 Interrupt Vector Fetch -----3 usec EOI Cycles ------3.1 usec

 - Timing Loops -----5 -10 usec

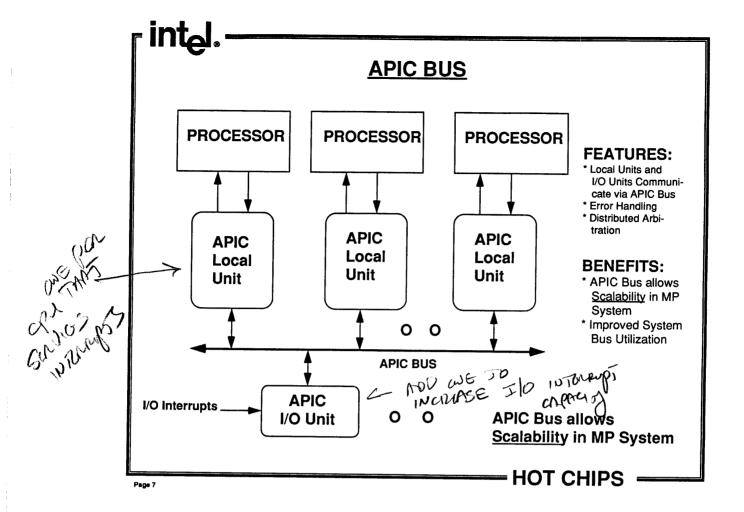
- HOT CHIPS

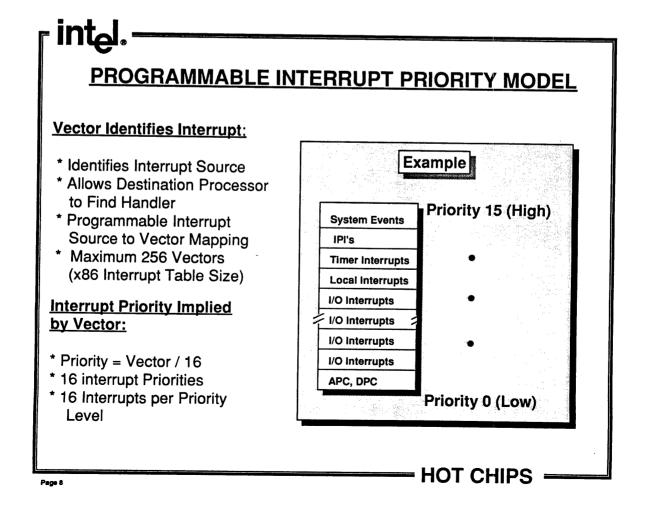
Page 3

APIC ARCHITECTURE OVERVIEW


HOT CHIPS

intel.


APIC ARCHITECTURE SUMMARY


- * Distributed Architecture
- * Dedicated Interrupt Communications Bus
- * Programmable Interrupt Priority Model
- * High Performance Priority Management
- * MP Interrupt Management

HOT CHIPS

Page 6

HIGH PERFORMANCE PRIORITY MANAGEMENT

- * APIC MAINTAINS TWO PROCESSOR PRIORITY INDICATIONS
 - TASK PRIORITY
 - * Tracks OS Defined Task/Process/Thread Priority
 - * Updated by Writes to Local APIC's Task Priority Register
 - Task Switch
 - Task Priority Changes (e.g. SPL ())
 - INTERRUPT HANDLER PRIORITY
 - * Equal to Priority of Highest In-Service Interrupt
 - * Handler Can Explicitly Raise/Restore Priority via Task Priority Register
 - * APIC Tracks Handler Priority Across Interrupt Nesting/Unnesting
- * CURRENT PROCESSOR PRIORITY IS MAXIMUM OF THESE TWO

- HOT CHIPS -

Page 9

intel.

HIGH PERFORMANCE PRIORITY MANAGEMENT

- * APIC masks all Interrupts Lower or Equal to the Current Priority Level
- Memory Mapped Task Priority Register
- * Useful for Synchronized Access of Shared Resources in OS
- * Provides Mutual Exclusion
- * Faster SPL () / R/LQL () Routines

HOT CHIPS

MP INTERRUPT MANAGEMENT

- * Fully Symmetric, Static/Dynamic Interrupt Distribution
- * Group Broadcast, Fixed or Lowest Priority
- * Focus Processor concept
- * Logical or Physical Addressing
- * Flexible Inter-Processor interrupts
- * Supports Tasks Migration and Interrupt forwarding

Page 11

HOT CHIPS

APIC FEATURES BENEFITS SUMMARY

Features	Benefits
Programmable Interrupt Priority	OS Customizable Priority Model
CPU/Task Priroty Tracking	Reduces Software Overhead Faster SPL() Routnes
32-bit Memory Mapped Registers	Posted Writes; Performance Boos
APIC Bus	Scalabity in MP Systems
Dynamic Interrupt Distribution	Load Balancing in MP systems
Focus Processor	Improves Interrupt Latency
I	,

= HOT CHIPS :