PCI Peripheral Component Interconnect

Hot Chips Symposium 11 August 1992

David Carson

ing Corporation

Peripheral Component Interconnect

Motivation - Design Objectives

Local Bus Alternatives

PCI Characterization

Performance Considerations

PCI Applications

Summary

MANUSY MASURINA What should a local bus accomplish?

Enable PC innovation in:

Performance: ✓ allow second to none graphics for PCs

✓ overcome standard bus limitations

Function:

✓ e.g., multi-media, motion video

at volume price points

Cost:

✓ highly integrated systems

✓ lowest cost peripherals

✓ investment spanning multiple CPU generations

by driving a

component-to-component connection standard for PCs, to complement existing board-to-board connection standards.

PCI Design Objectives

Performance

- ✓ Data bursting as normal operating mode both read & write
- ✓ Linear burst ordering (NOT CAUTE WAPORDER)
- ✓ Concurrency support (deadlock, buffering solutions)
- ✓ Multi-master, peer-to-peer protocol
- ✓ Low latency guarantees for real time devices
- ✓ Access oriented arbitration (not time slice)

□ Cost

- ✓ No connection glue; no external data buffers
- ✓ Low pin count interface
- ✓ Implementable in existing ASIC technologies

inle

Peripheral Component Interconnect

HiChn 5

PCI Design Objectives

□ Reliability

- ✓ Thorough electrical design for multiple loads in 33 MHz local bus environment
- ✓ Error detection, reporting

□ Flexibility:

- ✓ Processor independent; peripherals off processor "treadmill"
- ✓ Multi-master; peer-to-peer protocol
- ✓ Multi-media support
- ✓ Compatible with existing expansion standards
- ✓ Scaleability designed in from the beginning
- ✓ Applicable from laptop to server

Peripheral Component Interconnect

intel Peripheral Component Interconnect

monp /

Processor Bus

Alternative 1

inta

Buffered Processor Bus

Alternative 2

Intermediate Local Bus

Alternative 3

Peripheral Component Interconnect

Motivation - Design Objectives

Local Bus Alternatives

PCI Characterization

Performance Considerations

PCI Applications

Summary

inta

Peripheral Component Interconnect

HtChp 1

PCI Characterization

Protocol

- ✓ Multi-master, peer-to-peer
- √ 32-bit multiplexed, processor independent
- ✓ Low pin count; 45 slave; 47 master
- ✓ Synchronous, 8 33 MHz (132 Mbyte/sec)
- ✓ Variable length, linear bursting read & write
- \checkmark Parity on address, data, command
- ✓ Concurrency/pipelining support
- ✓ Initialization hooks for auto-configuration
- ✓ Arbitration: central, access oriented, "hidden"
- ✓ Comprehends write-back cache operation
- ✓ 64-bit extension transparently interoperable with 32-bit

inta

PCI Characterization

Electrical

- ✓ CMOS drivers; TTL voltage levels
- √ 5 V, 3.3 V interoperable; 5-volt "safe"
- ✓ Reflected wave, rail-to-rail signalling
- ✓ Dynamic current / voltage specified for drivers
- ✓ Optimized drivers minimize pwr/gnd requirements
- ✓ Direct drive no external buffers; comprehends connectors

PCI . . . more than a paper spec

- ♦ 5000+ hours SPICE simulation completed
- → Full scale prototype correlated to SPICE model
- → PCI-optimized buffers available thru several ASIC houses
- → PCI SPICE models available thru Meta-Software
- → PCI logic/validation models available thru Logic Modeling (LAI)

Design completeness

RELIABILITY

inte

Peripheral Component Interconnect

Peripheral Component Interconnect

Motivation - Design Objectives

Local Bus Alternatives

PCI Characterization

Performance Considerations

PCI Applications

Summary

Local Bus Bandwidth Requirements

LAN (FDDI ~12 MB/sec)

1 MBytes/sec

❖ SCSI (multiple spindles ~10-15 MB/sec)

5+ MBvtes/sec

- Full Motion "Business Video"
 - YUV-8 color space
 - compressed NTSC = 0.2 MB/sec
 - 320 × 240 = 2.3 MB/sec

• $640 \times 480 = 9.2 \text{ MB/sec} (\times 2) =$

~20 MBytes/sec

Graphics:

full page

1280 × 1024

full color - RGB

× 24 bits

"flip through a book" × 10 frames/sec = 40 MBytes/sec

PCI Bandwidth:

32-bit Base

64-bit Expansion

Peak

132 MByte/s

264 MByte/s

Observations

Bandwidth needs to be efficiently shared

Transparent extensions (wider/multiple buses) are important

intel.

Peripheral Component Interconnect

MChn 1

Focus on Graphics

- □ Frame buffer access characteristics:
 - ✓ Dumb Frame Buffer

~ 80% writes

✓ Windows/"Smart" Frame Buffer

> 90% writes

✓ BAPCO Benchmark

95% writes (measured)

□ Writes (not reads) determine graphics performance, consequently

Local bus design target should be ZERO processor wait-state writes especially on higher frequency processors

_intal

Graphics Performance

Frame Buffer Writes

An Example

Zero Wait-State Writes

Most demanding write sequence is source-copy (memory-to-screen) typically done with <u>Repeat-MOV-String</u>:

- 1. Pixel map read from memory in cache line bursts
- 2. Pixels written to frame buffer in D-word (32-bit) accesses

Peripheral Component Interconnect

Intel Peripheral Component Interconnect

HtChp 1

Desktop Application

intal

I/O Subsystem Application

intel Peripheral Component Interconnect

Peripheral Component Interconnect

Motivation - Design Objectives

Local Bus Alternatives

PCI Characterization

Performance Considerations

PCI Applications

Summary

Summary

Compared with processor bus or buffered processor bus approaches, PCI provides:

Performance: Higher graphics performance.

Multi-master concurency.

Cost: Lower pin count.

Highest level of system integration.

Reliability: Thorough electrical design and

extensive modeling.

Flexibility: Processor independence.

Pre-defined, transparent scaleability.

Acceptance: Broad industry support.

⊐nt∂

Peripheral Component Interconnect

HtChp 23

Broad Industry Support

"Intend to build or support PCI-compliant devices or systems."

OEMs ✓ Acer ✓ ALR ✓ AST ✓ Compaq ✓ DEC ✓ Dell ✓ Epson ✓ FUJITSU ✓ Gateway 2000 ✓ HP ✓ IBM ✓ Mitsubishi ✓ NCR ✓ NEC Tech. ✓ Oki Olivetti Siemens ✓ Tandy Unisys ✓ ZDS

Graphics;	Video;
✓ ATI ✓ Cirrus	✓ Intel
✓ Headland ✓ Intel	Chipsets;
✓ Matrox ✓ NCR	✓ Headland ✓ Intel
✓ Tseng Labs ✓ S3	✓ VLSI ✓ WD
✓ WD	Board;
SCSI; ✓ Adaptec	✓ AMI ✓ Micronics
✓ NCR	Other;
LAN; ✓ Intel	✓ National ✓ NCR
ZTI	

inta

More Information?

- □ PCI hotline: (503) 696-2000
 - ✓ Request a specification
 - ✓ Join PCI Special Interest Group
 - ✓ Questions / Support