Cold Chip Design Techniques

Anantha Chandrakasan - GRASO Samuel Sheng Robert Brodersen

Dept. of EECS, U.C. Berkeley


Why "Cold" Chips?

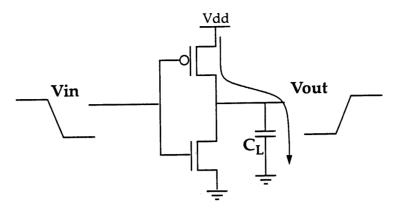
Heat Dissipation in "Hot" Chips

- DEC Alpha: 30W @ 3.3V, 200Mhz
- SUN Viking: 8W @ 5V, 50Mhz

Portable Applications

- Multimedia Terminals
- Laptop Computers
- Digital Cellular Telephony

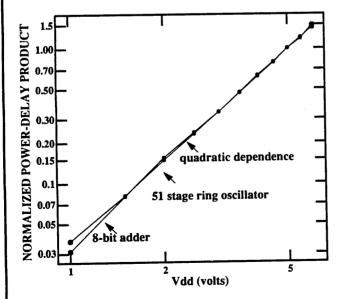
General Purpose vs. Application Specific Computing


- General Purpose Computing (e.g. Laptop computers)
 - Desire maximum achievable throughput.
 - Power down techniques.
 - Reduction of supply voltage from 5V to 3.3V.
- Application Specific Computing (e.g. Video Compression)
 - Power down techniques not as appropriate.
 - No advantage in making the computation faster once throughput requirements are met.

Many new and exciting applications are application specific in nature.

Ways to Reduce Power

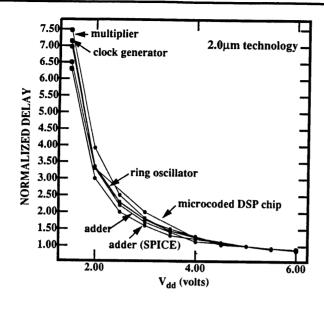
- Technology.
- **■** Logic Styles.
- **■** Architectures.
- Algorithms.


Where Does Power Go?

Energy/transition = $C_L * V_{dd}^2$ Power = Energy/transition * $f = C_L * V_{dd}^2 * f$

• Need to reduce C_L , V_{dd} , and f to reduce power.

Normalized Energy

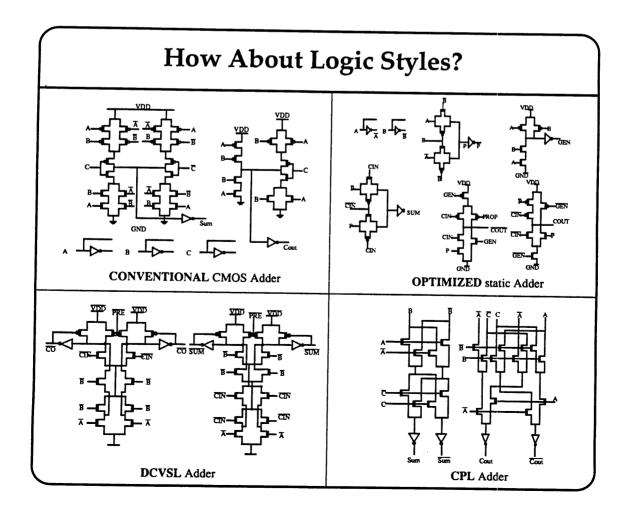

$$E_t = C_L * V_{dd}^2$$

$$\frac{E_{\text{(Vdd=2)}}}{E_{\text{(Vdd=5)}}} = \frac{(C_L) * (2)^2}{(C_L) * (5)^2}$$

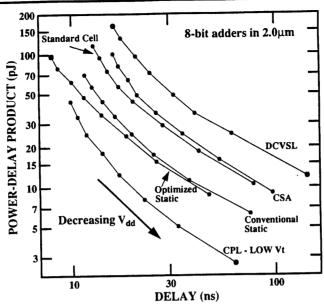
$$E_{(Vdd=2)} \approx 0.16 E_{(Vdd=5)}$$

- Strong function of voltage (V² dependence).
- Relatively independent of logic function and style.

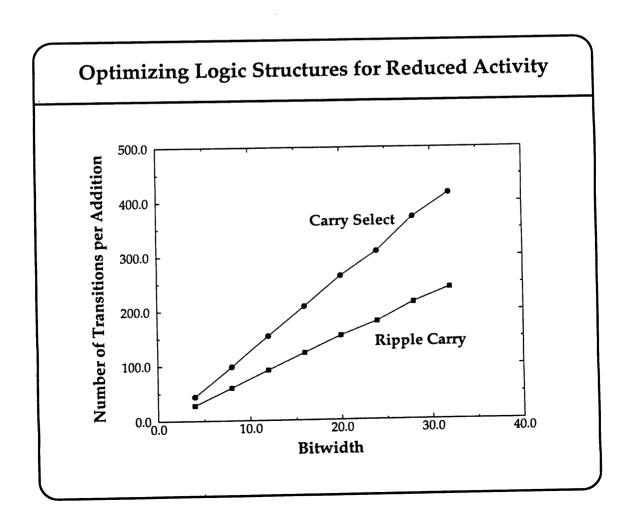
Normalized Delay

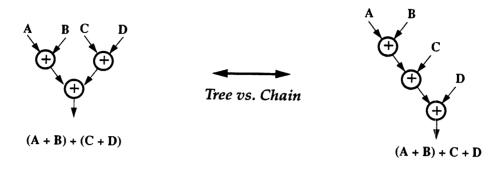

$$T_{d} = \frac{C_{L} * V_{dd}}{I}$$

$$I \sim (V_{\rm dd} - V_{\rm t})^2$$


$$\frac{T_{d(Vdd=2)}}{T_{d(Vdd=5)}} = \frac{(2) * (5 - 0.7)^{2}}{(5) * (2 - 0.7)^{2}}$$

$$\approx 4$$

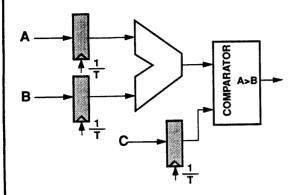

- Lowering V_{dd} reduces energy but increases delays.
- Relatively independent of logic function and style.


What Logic Style to Use?

- Power-delay product improves as voltage decreases.
- The "best" logic style minimizes power-delay for a given delay constraint.

Mutiple Signal Transitions

Inputs	Normalized # of Transitions Tree Chain		
4	1	1.45	
8	1	2.5	

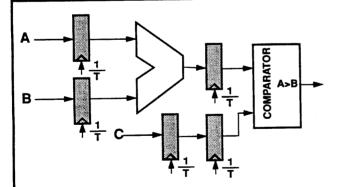

 Can be reduced by reducing the logic depth and balancing signal paths.

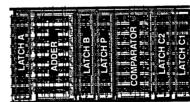
Architecture

- Desire to operate at lowest possible speeds (using low supply voltages).
- Use Architecture optimization to compensate for slower operation.

Approach: Trade-off AREA for lower POWER

Architecture Trade-offs - Reference Datapath

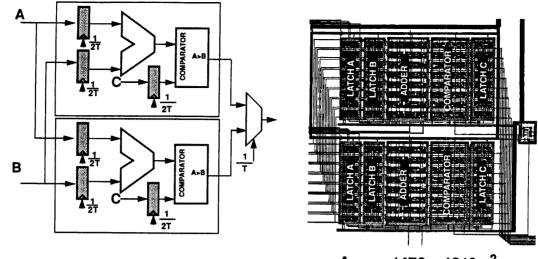




Area = 636 x 833 μ^2

- Critical path delay \Rightarrow T_{adder} + T_{comparator} (= 25ns) \Rightarrow f_{ref} = 40Mhz
- Total capacitance being switched = C_{ref}
- $V_{dd} = V_{ref} = 5V$
- Power for reference datapath = P_{ref} = C_{ref} V_{ref}² f_{ref}

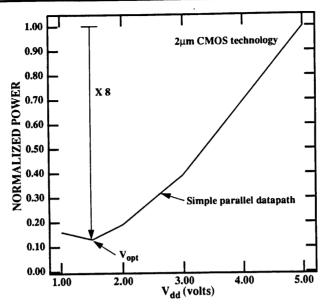
Pipelined Datapath



Area = 640 x 1081 μ^2

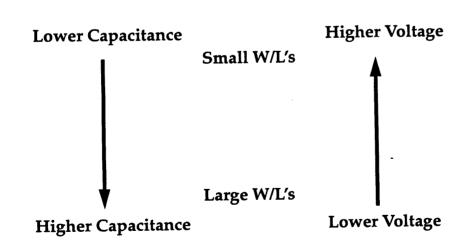
- Critical path delay is less \Rightarrow max [T_{adder}, T_{comparator}]
- Keeping clock rate constant: $f_{\text{pipe}} = f_{\text{ref}}$ Voltage can be dropped $\Rightarrow V_{\text{pipe}} = V_{\text{ref}} / 1.7$
- Capacitance slightly higher: C_{pipe} = 1.15C_{ref}
- $P_{pipe} = (1.15C_{ref}) (V_{ref}/1.7)^2 f_{ref} \approx 0.39 P_{ref}$

Parallel Datapath



- Area = 1476 x 1219 μ^2
- The clock rate can be reduced by half with the same throughput $\Rightarrow f_{par} = f_{ref} / 2$
- $V_{par} = V_{ref} / 1.7$, $C_{par} = 2.15C_{ref}$
- $P_{par} = (2.15C_{ref}) (V_{ref}/1.7)^2 (f_{ref}/2) \approx 0.36 P_{ref}$

Architecture Summary for a Simple Datapath


Architecture type	Voltage	Area	Power
Simple datapath (no pipelining or parallelism)	5V	1	1
Pipelined datapath	2.9V	1.3	0.39
Parallel datapath	2.9V	3.4	0.36
Pipeline-Parallel	2.0V	3.7	0.2

How Low a Voltage Can We Use?

- Too much parallelism adds overhead circuitry. Overhead circuitry can dominate with high levels of parallelism.
- An architecture driven optimum operating voltage can be found.

Transistor Sizing Strategy for Minimizing Power

- Larger sized devices are useful only when interconnect dominated.
- Minimum sized devices are usually optimal for low-power.

Conclusions

- POWER is the most critical consideration in portable systems.
- AREA (transistors) can be traded for POWER.

SLOWER IS BETTER - The best design will used the slowest circuits to meet the computation requirements.