	Texas Instruments		
	THE MEGACELL DIF	FERENTIATED FL	DATING POINT PRODUCT FAMILY
	AUTHORS:	DAVID BURAL ,	TEXAS INSTRUMENTS
		MERRICK DARLEY,	TEXAS INSTRUMENTS
		MARIA GILL ,	TEXAS INSTRUMENTS
		PETER GROVES ,	TEXAS INSTRUMENTS
		DON STEISS ,	TEXAS INSTRUMENTS
		TOD WOLF ,	TEXAS INSTRUMENTS
			_

Y

•

Texas Instruments
BENEFITS
 MEGACELLS PROVIDE FULLY COMPACTED, HIGH PERFORMANCE DATAPATHS AND MEMORY UNITS
 GATE ARRAY PROVIDES EASE OF USE AND QUICK-TIME-TO-MARKET FOR CUSTOMER SPECIFIC LOGIC
• CUSTOMER'S RESOURCES ARE FOCUSED ON THEIR SYSTEM NEEDS
 TI'S DESIGN RESOURCES ARE FOCUSED ON THE MEMORY AND DATAPATH ELEMENTS AS WELL AS THE DEVICE TECHNOLOGY
• SUPPORTS SCALAR, PIPELINE AND SUPER PIPELINE ARCHITECTURES
CONFIGURABILITY TO OPTIMIZE COPROCESSOR, PARALLEL PROCESSOR AND GRAPHIC ARCHITECTURAL SUPPORT
• HIGH PERFORMANCE LOW POWER 0.8 M PROCESS
.

Toyon Instruments	
	ALU MEGACELL INSTRUCTIONS
MNEMONIC	FUNCTION
ADD ADDO	FLOATING POINT AND INTEGER ADDITION FLOATING POINT AND INTEGER AND ZERO TO A OPERAND (CAN GENERATE ARS, NEG, mARS)
ADDC AND SHIFTRA	INTEGER AND WITH CARRY LOGICAL AND ARITHMETIC SHIFT PICHT BY N
CIC CLASS	CLEAR INTEGER CARRY NUMBER CLASS FUNCTION COMPARE AND SET STATUS
	SINGLE CYCLE FORMAT CONVERSIONS UNSIGNED INTEGER DIVIDE STEP 1 AND NORMALIZE
IDNI2 IDNI IDNT	UNSIGNED INTEGER DIVIDE STEP 2 UNSIGNED INTEGER DIVIDE ITERATE UNSIGNED INTEGER DIVIDE TERMINATE
	UNSIGNED INTEGER REMAINDER TERMINATE EXTRACT BIASED EXPONENT EXRACT MANTISSA
SHIFTRL MERGEF NAND	LOGICAL SHIFT RIGHT BY N MERGE EXPONENT AND MANTISSA LOGICAL NAND
NOPA NOR OR	NO OPERATION INSTRUCTION LOGIC NOR LOGICAL OR
PASSAQ PENC	PASS WITH NO STATUS FLAGS, (CAN GENERATE FLOATING POINT ABS, NEG, —ABS) PRIORITY ENCODE INTEGER
SIC SHIFTL XNOR	SET INTEGER CARRY SHIFT LEFT BY N LOGICAL XNOR
XOR	LOGICAL XOR

70

a .

6.11

-

Texas Instruments	
MULTIPLIER MEGACELL	
• OPERATIONS CAN BE SPECIFIED IN THE GENERAL FORM: $\{+, -, , - \}$ OP $\{+, -, , - \}$ B	
 DENORMAL NUMBERS ARE PROCESSED IN THREE WAYS: IEEE MODE – GRADUAL UNDERFLOW FAST MODE – CONVERT TO ZERO WRAP MODE – MULTIPLIER ACCEPTS AND PRODUCES WRAPPED NUMBERS AS OPERANDS AND RESULTS 	1
HIGH SPEED SUM OF PRODUCTS OPERATIONS CAN BE ACHIEVED IN COMBINATION WITH THE ALU	

MNEMONIC	FUNCTION
NOPM	NO OPERATION INSTRUCTION
PASSMQ	PASS A, NO STATUS UPDATE
IULT	MULTIPLY (MICROCODED EXCEPTIONS)
AULT 1	MULTIPLY BY ONE (MICROCODED EXCEPTIONS)
DIV	FLOATING POINT DIVIDE (MICROCODED)
INV	FLOATING POINT RECIPROCAL OF B
CORT	(MICROCODED EXCEPTIONS)
	1 / COPT(P)
MRM	LOAD MULTIPLIER MODE REGISTER

U

•

'n

Texas Instruments	
MULTIPLIER MEG	ACELL THROUGHPUT
INSTRUCTION TH	ROUGHPUT IN CLOCK CYCLES
32X32 INTEGER MULTIPLY	1
64X64 INTEGER MULTIPLY UPPER HALF OR LOWER HALF 128-BIT RESULT	1 2
IEEE FLOATING POINT MULTIPLY	1
IEEE FLOATING POINT DIVIDE SINGLE DOUBLE	4 5
IEEE FLOATING POINT SQRT SINGLE DOUBLE	6 7
FLOATING POINT 1/SQRT SINGLE DOUBLE	5 6

A State of S

Texas Instruments
REGISTER FILE MEGACELL
• 32-DEEP BY 64-BIT WIDE
LONG-WORD ADDRESSABLE
STORE 64 SINGLE PRECISION OPERANDS OR 32 DOUBLE PRECISION OPERANDS
2 READ PORTS AND 1 WRITE PORT DEDICATED TO THE ALU
• 2 READ PORTS AND 1 WRITE PORT DEDICATED TO THE MULTIPLIER
I READ PORT AND 1 WRITE PORT DEDICATED TO THE I/O
SPECIAL FEEDTHROUGH PATHS
ARITHMETIC PROCESSING CAN OCCUR AT THE SAME TIME AS I/O TRANSFERS
ALL PORTS CAN BE USED IN ANY CLOCK CYCLE AND AT ANY RATE
t iz

Texas Instruments									
0.8 um DLM CMOS PROCESS									
METAL 1 PITCH:	2.0 um (NO CONTACTS)								
	2.6 um (WITH CONTACTS)								
METAL 2 PITCH:	2.0 um (NO VIAS)								
	2.6 um (WITH VIAS)								
DRAWN POLY WIDTH:	0.8 um								
POLY SPACE:	1.0 um (OVER FIELD)								
	1.5 um (OVER DIFFUSION)								
CONTACT SIZE:	0.8 X 0.8 um**2								
VIA SIZE:	0.8 X 0.8 um**2								

0.8 um DI M CNOS ELECTRICAL PARAMETERS
S.S GIT DEM GMOS LEEGTRICAL PARAMETERS
Leff, $p = 0.7$ um Leff, $n = 0.6$ um
SILICIDED POLY RESISTANCE: 2.0 ohms / sq
SILICIDED DIFFUSION RESISTANCE: 2.0 ohms / sq
REFERENCE: CHAPMAN, RICHARD A., "AN 0.8 UM CMOS TECHNOLOGY FOR HIGH PERFORMANCE LOGIC APPLICATIONS", IEDM 1987.

	Texas Instruments
	FIRST IMPLEMENTATION
•	COPROCESSOR FOR A PA-RISC PROCESSOR USED IN HP'S SERIES 700 WORKSTATION FAMILY
•	MEGACELL'S FLEXIBILITY MEET CUSTOMER'S REQUIREMENTS FREQUENCY ARCHITECTURE LATENCY (3 CYCLE) THROUGHPUT (2 CYCLE)
•	ADDITIONAL INSTRUCTIONS WERE ADDED TO MAXIMIZE PERFORMANCE
	3-REGISTER MULTIPLY INDEPENDENT 2 REGISTER ADD OR SUBTRACT ACCELERATED CLIP TEST RECIPROCAL SQUARE ROOT INTEGER MULTIPLY

,

Texa:	Instruments
	FIRST IMPLEMENTATION RESULTS:
	DIE SIZE: 502 X 518 MILS
	TRANSISTOR COUNT: 640K
	PACKAGE: 207 PIN CERAMIC PGA
	POWER: 5.0 WATTS AT 66 MHZ
	SPEED: 66 MHZ, WORST CASE CONDITIONS
	LINPACK BENCHMARK (100 X 100) SINGLE PRECISION: 33.2 MFLOPS DOUBLE PRECISION: 23.0 MFLOPS

Architecture Clock Rate (MHz)		PA-RISC	PA-RISC	RS/6000	SPARC	MIPS	88000	68040	486	1860
		50	66	30	40	33	33	25	33	40
letezer	gcc	35.2	46.5	21.0	19.6	25.9	18.3	13.8	18.8	15.1
	espresso	42.5	55.2	24.9	19.0	26.3	23.0	13.4	17.1	22.3
IIIIagoi	11	38.1	50.3	23.7	23.2	32.1	23.9	15.5	23.3	21.7
	eantott	40.6	52.6	26.7	21.5	24.7	20.7	9.8	14.8	18.9
	spice2g6	46.9	60.9	33.2	16.8	21.0	14.8	13,1	12.0	18.1
	doduc	48.6	64.0	33.1	18.4	27.1	12.2	8.1	7.7	18.8
Floating-	nasa7	58.0	73.7	43.4	27.4	29.6	17.5	12.1	7.8	57.6
Point	matrix300	210.0	273.3	26.5	28.1	21.7	21.5	11.5	12.8	28.1
	1pppp	81.4	107.0	65.8	23.7	33.8	15.3	13.4	10.2	25.7
	tomcatv	52.9	67.4	91.0	17.8	25.8	14.9	9,1	6.3	43.8
C	SPECmark	55.5	72.2	34.7	21.2	26.5	17.8	11.8	12.1	24.7
Geometric Means	Integer-Only	39.0	51.0	24.0	20.8	27.1	21.4	12.9	18.2	19.3
	FP-Only	70.2	91.0	44.3	21.6	26.1	15.8	11.0	92	29.2

Table 1. SPEC benchmark results. These represent the highest clock rates currently available in systems, except for IBM's 41.6-MHz RS/6000 Model 550 which was excluded because it is not in the same price class. Note PA results are for June '91 compiler release. The systems are the HP 9000 Model 720; HP 9000 Model 730; IBM RS/6000 Model 540; Sun SPARCstation 2; MIPS RC3360; Motorola Delta Series Model 8612; HP 425s; and Alacron AL860. All machines except i860 have external cache.

Y

