The i860[™] XP Second Generation of the i860[™] Supercomputing Microprocessor Family

David Perlmutter Michael Kagan

Intel Israel

August 1991

Presentation Outline

- i860[™] XP CPU Key Attributes
- Supercomputing/Visualization System Requirements
- The i860 XP Microprocessor
- Vector Operation Capabilities
- Multi-Processing Capabilities
- Internal Architecture
- Performance Benchmarks
- \$/MFLOP Roadmap
- Summary and Conclusions

i860™ XP CPU Key Attributes

- Target Markets
 - Massively Parrallel Supercomputer and Mulit-Processing Systems
 - Super Workstation & servers
 - High End Workstation Graphics/Accelerator Subsystems
- Technology
 - 3 Layer Metal, 0.8uM CHMOS-V Technology
 - 2.55 Million Transistors
 - Die Size: 612 X 404 mils
 - 262 pin CGA Package
 - Frequency 40 & 50 MHz
 - Power Dissipation (@50 MHz) 5W

int_{el}®

Supercomputing/Visualization System Requirements

- High Throughput Computing Performance
 - "Number Crunching" Floating-Point Capability
 - Real Time 3D Graphics/Visualization
- Multiprocessing/Parallel Processing
- Vector Processing
- High Bus Bandwidth
- Scalable Performance
- Cost Effectiveness

The i860™ XP Supercomputing Microprocessor

RISC

CORE

D-Cache

16KB

4 Way

i860[™]XP CPU

- Very High Performance
 - 100MFLOPS
 - 400MByte/Sec Bus Bandwidth
 - 40 & 50 MHz Operation
 - 40+ SpecMark
 - 3 operations/cycle
- High Integration, Single Chip
- Multi & Parallel Processing
 - Hardware Cache Consistency
 - Bus Snooping
 - Detached Concurrency Control Unit (DCCU)
 - Scalable Shared Bus or Massively Parallel
- Upward Software Compatible with i860™ XR CPU

A SUPERCOMPUTING MICROPROCESSOR

intel®

Vector Operation Capabilities

Pipelined Load Instructions

64 bits

ADD

I-Cache

16KB

4 Wav

64 bits

MULT

i860 XR compatible

30

Graphics

MP Snoop Logic

Physical tag

Pipelined Burst Bus & MMU

- Loads 128bits in 2 CLKs
- Helps to Hide Memory Latency
- Specialized Instructions to Reduce Tight Loops
 - BLA Add & Branch with 0 latency
 - Dual Instruction mode FP and Integer parallelism
 - Dual Operation Instructions
- Large D-Cache to hold large Vectors
- Optimized DRAM interface For Fast Bus Throughput
 - Paged DRAM Support
 - Three levels of pipeline
 - Burst Bus
 - Wide Memory Access

Multiprocessing Capabilities

Reduced Bus Utilization (Scalability)

- Large On-chip Write-Back Cache
- 2nd level Write-Back Cache (82490XP/82495XP) (Consistency By Inclusion)
- LOCK by Address

Data Consistency / Integrity

- HW Based MESI Cache Consistency Protocol
- Bus Snooping Concurrently with Cache Look Up
- Weak/ Strong Write Ordering Mode
- Data Parity Check Bus Retry Hooks

Parallel Processing

- Loop Level Parallelism (MPIC, DCCU)

int_el®

Internal Architecture

Performance Benchmarks

Total SPEC *	41+
FP SPEC *	50
Dhrystone	103.9
Triangles/sec	80K
Linpack (Double) MFLOPS	20

intel®

i860™ Architecture \$/MFLOP Roadmap

^{*} Based on preliminary results on prototype board

Summary & Conclusions

- Supports High End MP/PP Systems Via Coarse to Loop Level of Parallelism
- Supports Large Variety of Memory Sub Systems
 - From DRAM to Sophisticated Second Level Cache Based Systems
 - Scalability From Uniprocessor to Massively Parallel systems
- High Integration
 - RISC core Surrounded with FP, Caches, MMU, and CCU
- Bus Optimized for Vector Operations and Fast Throughput
- Cost Effective MFLOPS

i860™ XP CPU DELIVERS SUPERCOMPUTING PERFORMANCE
TO BROAD CLASS OF AFFORDABLE SYSTEMS

intel®

Die Photo