

A Fully Integrated Superscalar Processor

Greg Blanck
Sun Microsystems

Steve Krueger
Texas Instruments

Hot Chips Symposium August 26, 1991

Super **SPARC**™

Program Objectives

Workstation SuperSparc Solution Microprocessor Essentials □ High Performance 3 Instruction Resource-Rich SuperScalar Fast Double-Precision Floating Point Single Cycle Loads/Stores **BICMOS** ☐ 100% Application Binary Compatible SPARC Version 8 Architecture (IMUL/IDIV) IU/FPU/MMU/Cache/Mbus on-chip □ High Integration - All Fully MP "ready" □ Useful in Several Configurations **Large Internal Caches Companion Cache Controller Built-in Self Test** □ Extensive Test/Debug Support **JTAG Scan Based Emulation**

ICE-like debugging features

- High Performance, Superscalar
- Highly Integrated
- 3.1 million transistors, BiCMOS
- 3 Instructions/Cycle Issue and Execution
- SPARC Version 8 Compatible
- Direct MBus Level II or used with External Cache Controller

Cache Controller

- Optional External Cache Controller
- Fully integrated, on-board cache tags
- Synch or Async interface to system bus
- 1MB unified, direct-mapped cache
- MBus Level-II Interface (Cache Consistent Multiprocessor Interconnect)

Super SPAR Floating Pt. Execution Floating Point Complete Double Precision Control No Unfinished Operations **JTAG** Integer Unit SuperScalar Integer Control Execution Instruction Grouping/Decode Two ALU's / 64-bit Loads & Stores 128 bit Access 64 bit Access 20 Kbyte 16 KByte MMU Instruction Cache **Data Cache** 64 Entry Fully Associative Physically Addressed 4-way set associative Physically Addressed Reference MMU 5-way set associative **Dual System Interface** Store/Copyback MBus Level II Buffer Viking Bus to External Cache

MBus Configurations

Lower Cost Systems

Higher Performance Systems

Super SPARC™

Superscalar Principles of Operation

- 3 instruction/cycle issue & execute, fully dynamic scheduling
- Simulataneous execution may be constrained by:
 - data dependencies
 - control dependencies
 - internal resources
- SuperSPARC Resources:
 - Single 64-bit LD/ST
 - •
- Single Br/Jmp/Call/Return
- Two 32-bit ALUs
- Two 32-bit integer results
- Single FP Issue
- Designed to handle dependencies well, not wish them away

Superscalar Example

ldd faddd add	[%10],%f2 %f2,%f0,%f6 %10,0x8,%10
! Break (Three Instructions max)	
ldd add fmuld	[%10],%f4 %10,0x4,%10 %f4,%f0,%f8
! Break (Three instructions max)	
ldd cmp be	[%10+4],%f10 %10,0x100 Loop
	· . · · •
! Break (Branch, Three instructions)	
faddd	%f6,%f8,%f0

Super SPARC™

MBus Multiprocessing

- SuperSPARC has complete multiprocessing support
- First and optional second level caches all coherent
- MBus interface has snoop logic
- Processor not affected by most snoop traffic
- System configuration, memory speed and applications,
 Limit number of processors that can be supported
- Supports SPARC Architecture Version 8 multiprocessor memory model (Total Store Ordering and Partial Store Ordering)

Technology

- SuperSPARC CPU and Cache Controller are manufactured in TI's EPIC IIB process
 - 0.8 micron minimum feature size
 - BiCMOS Best of Bipolar and CMOS circuits

Bipolar: I/O and interconnect CMOS: Density and simplicity

- Triple Level Metal
- High Performance Dense Ceramic Pin Grid Array (CPGA) with heatsink
 - SuperSPARC CPU: 293 pins, 70 mil pin to pin
 - SuperSPARC CC: 369 pins, 70 mil pin to pin

Super SPARC

Summary

- 3 instruction Superscalar groups and schedules instructions
- High integration of critical features gives higher performance at lower cost
- BiCMOS for the right balance of speed, density and simplicity
- MBus "multiprocessing ready"
- SPARC Architecture Version 8: 100% binary compatible