

- IBM Advanced Workstation Division -

Ē

IEEE Standard 754 Conformance

- Four Rounding Modes (+inf, -inf, zero, nearest)
- Single (32 bits) and Double (64 bits) Precision
- All Exceptions Supported (with software assist)

Short Pipeline: Multiply-Add Fused Dataflow
Dot Product Dataflow
 S = AxC + B
Reduced Latency
 S3-bit x 53-bit Multiply Performed in single Machine Cycle
 106-bit partial products + 54-bit operand in single Machine Cycle
Leading-Zero Anticipator Predictes Number of Leading Zeros
 In Parallel with Addition
Only One Round per Mul-Add Operation
 Full 106-bit Partial Products used in Add
Reduces Internal Busing

حر ا

- ISM Advanced Workstation Division

	·
fa	add
fs	subtract
fm	multiply
fma	multiply-add
fms	multiply-subtract
fnma	negative multiply-add
fnms	negative multiply-subtract
fabs	absolute value
fneg	negate
fnabs	negative absolute value
frsp	round to single precision
fmr	move
fd	divide

- IBM Advanced Workstation Division -

•

a

- A Double Precision Arithmetic Operation can start every cycle
- Only 2 Cycles of latency
- Addition of first instruction performed in parallel with Multiply of second
- Data Bypasses Cut Delay for back-to-back Dependencies to 1 cycle
- Concurrent Execution of Floating–Point Arithmetic and Load Operations

- IBM Advanced Workstation Division-

Tightly Coupled Execution
FPU and FXU execute instructions concurrently (the FPU is NOT a co-processor)
FPU and FXU Share Instruction Buses
FPU and FXU Synchronize on all Interruptable Operations
Decoupled FPU and FXU Execution Units: Avoid Interlocks

Register Renaming
Store Data Queue

1.

.

Register Renaming Implementation

- 40 Physical Floating-Point Registers
 - 32 Architected (programmers view)
 - 2 Dedicated for divide routine
 - 6 for Register Renaming
- Table (array) maintains architected-to-physical map
- Table is modified apon completion of Load instruction
- All instruction reference table to "look-up" physical registers used

- IBM Advanced Workstation Division -

Performance			
• 60 MFLOPS pe	ak double pre	ecision Linpack at 30	MHz (model 530)
Matr	rix Performan	ce Comparisons:	· ·
		time (sec)	ratio
Sparcstation 4/330	(25MHz)	1140.0	(7.8)
DECstation 3100	(16MHz)	1160.0	(7.9)
Convex C-240	(25MHz)	140.0	(1.0)
FPS-500	(33MHz)	170.0	(1.2)
RISC System / 6000) (25MHz)	147.0	
		10 68	and Montantan District

Summary

- Concurrent execution of fixed point and floating-point operations
- Concurrent execution of floating-point arithmetic and load operations
- Register renaming allows floating loads to execute ahead of arithmetics

1..

- Data store queue allows floating loads to execute ahead of stores
- Multiply-Add instruction provides enhanced precision
- Short pipelined Dataflow performs 60MFLOPS peak at 30MHz

- IBM Advanced Workstation Division-