
I

Compiling for the Rise
System/6000
Branch Unit

Martin Hopkins

Watson Research Center

Classical801 Risc, 1975- 85

Time = path length • cycles per instruction • cycle time

801 emphasized last two.

• Hard wire the CPU. Avoid microcode.

• Shorten the cycle time by:

Regular instruction formats.

Simple instructions. (Not fewer)

• Promote operand reuse by:

Many general purpose registers.

Ops that preserve all operands.

• Increase micro parallelism. (Pipelining)

Loads proceed in parallel.

Special attention to branches.

• Make subroutine linkage fast.

• Invest in the memory subsystem.

• Rely on optimizing compilers to exploit hardware.

• Compiler writers help specify architecture.

I

·2· AUGu. 1HO (Mertln Hopldne)



RS/6000 Hardware

The evolution to Post Rise.

• CPU is three CMOS " chips, 32 - 40 ns cycle versions.

Branch Unit and Instruction Cache.

Fixed Point Unit.

Floating Point Unit.

• 64 KB Data cache

128 byte lines

Four way set associative

• Data TLB on Fixed point chip.

128 entries

Two way set associative

Hardware reload.

• 8 KB instruction cache on branch chip.

- Two way set associative.

• Instruction TLB on branch chip.

- Two way set associative.

• Main memory, minimum of 8 MS, maximum 256 MS.

• Inverted page tables, 4k pages.

Fixed Point Unit.

• 32 GPRs, 32 bits wide.

• No arithmetic from storage. (Must use loads.)

• (Base + Displacement) and (Base + Index) addressing

• Three output, two input Register File

• Ops are all 32 bits long.

All operations are non destructive. RT = RA op RS

Full set of immediate operations. RT = RA op ± 2'5
• High function ops:

Update forms of all loads and stores.

String assist ops.

Load and store multiple.

Single cycle ops to rotate, mask, and extract or insert.

3 - 5 cycle integer multiply.

19 cycle integer divide.

DOl for computing min and max.

Traps for HLL checking.

.3- Augu" 1110 (Martin Hopkin.) -4. Augu.e1110 (Martin Hopldn.)



Floating Point Unit

• IEEE floating point format.

• Biased toward double precision.

• Highly pipelined.

• MUltiply-Add is basic floating point operation.

RT = RA x RB + RC

One such operation can be completed every cycle.

• 32 architected 64 bit FPRs.

• Actually has six more.

Register renames permits fetching data to a register
without overlaying data that is still required.

Branch Unit.

• Prefetches instructions.

• Dispatches two operations per cycle to fixed and float units.

Any combination.

• Performs all branch processing.

Fixed and float units do not see branches.

• Eight four-bit condition registers.

Set by compare ops in other units.

Fixed point ops optionally set CRO.

Full set of boolean ops on condition register bits.

• Most branches are relative.

• Link register used for register branches.

Set by BAL or a copy from the fixed point unit.

• Count register used by BCT op.

Subtracts one from count register.

Branches on not zero take zero time.

Permits counting of loop iterations to be done in the
branch unit in parallel with the fixed point unit.

.,. ... Augu.1110 (Martin Hopldna)



An Example of the use of BCT

do 10 i = 0, 511
do 10 j = 0, 511

c(i, j) = 0
do 10 k = 0, 511

10 c(i, j) = c(i, j) + a(i, k) * b(k, j)

Compiled Code for two inner loops.

MIDDLE LOOP:
LRFL fpl=fpO
LR r12=rl0
LR rll=r8
LCTR RO

An Example of the use of BCT

total cycles for inner loop 2

LOOP:
LFDU
LFDU
FMA
BCT

fpr3,rll=a(rll,4096)
fpr2,rlO=b(rlO,8)
fprl=fprl,fpr3,fpr2
LOOP

1
1
o overlapped
o overlapped

C crl=r8,r7
STFDU r9,c(r9,4096)
AI r8=r8,4096
BH MIDDLE LOOP

·10· Augull 1_ (M.rtJn Hopkin.) ·10. Augu" 1880 (Martin Hopkin.)



,

Procrastination

C CRA=
BE LABELI,CRA
OPI
B LABEL2 two cycle delay, unresolvedBE

LABELl:
OP2

LABEL2:
OP3
OP4
OP5

The scheduling phase of the compiler converts the above to:

C
BE
OPI
OP3
OP4
B

LABELl:
OP2
OP3
OP4

LABEL2:
OP5

Procrastination

CRA=
LABELI,CRA

LABEL2

·11·

Ii

no delay as BE resolved

Augull 1110 (Martin Hopillne»



An Example from SPeC

Inner loop of xlygetvalue in Spec bench mark Ii.
A pointer chain search problem.

Original

Loop cycles

An Example from SPeC

After Replication

Loop cycles

1
1
1
e
1
1
1
1
1
e

L4:

-12-

1/

A.......1110 (Mer11nHopklne)

1 LI: L R4=0(R5,4)
1 <load delay>
1 L R0=0(R4,4)
1 <load delay>
1 C CRI=R3,R0
3 BNE L2,CRl

L R3=0(R4,8)
BLR

1 L2: L R5=0(R5,8)
1 <load delay>
1 C CR0=R5,0
3 BNZ LI,CR0

14 cycles for loop

·12-

L1: L R4=0(R5,4)
<load delay>
L R0=0(R4,4)
<load delay>
C CRl=R3,R0

o L3: BE L5,CR1
loop cleansed
of exit code

L R5=0(R5,8)
<load delay> .
C CRe=R5,e
BZ L4,CR0
L R4=0(R5,4)
<load delay>
L R0=0(R4,4)
<load delay>
C CRl=R3,0
B L3

8 cycles for loop

A.....1_ eM"'''' Hopillne)



Branch Swapping

loop:

e crlOO=•••
be exit,erlOO
bet loop

• The problem is that the BE op can execute in zero cycles,
but the BCT must wait until the BE is resolved.

• This is solved by branch swapping.

b enter
loop:

be exit
enter:

e erlOO=•••
bet loop
be exit,erlOO

• The two branches in the inner loop now take zero cycles.

Branch Performance

• Branches execute in zero cycles if:

They are unconditional.
In the case of branch on the link register, four cycles
must intervene between the setting of the link register
from a GPR and the branch.

Conditional branches that fall through.

When taken, there are three ops between the compare
and the branch.
Six for float compare.

BCT normally takes zero cycles.

• A resolved branch that follows ｾ ｮ unresolved branch causes
a delay of up to seven cycles.

• Branches to branches eventually cause problems.

• The compiler optimizes branch usage.

BCT is used on the innermost loop that can be controlled
by a count.

Compares are optimized like any other computation.

Condition registers are allocated like other registers.

Booleans can be allocated to the condition register.

·13- A...,.. 1110 eM.......Hoplr"'a) ·7· Augult 1110 (M.rtln Hopldne)



Branching and Optimization

• Compares produce results that are put into a CR just as
arithmetic operations produce results in computational
registers.

if a = b then

else if a < b then

This sourcecode is compiled to the following IL.

Branching and Optimization

Optional setting of the CR by computational ops makes this
possible.

C
, BE

LABEL 1:
C
BE

CR100=RA,RB
LABEL_l,CR100

CR100=RA,RB
LABEL_2,CR100

• Optimization can eliminate the second compare.
It may even be able to move the first compare out of a loop.

• Register allocation will assign CR100 to a real Condition
register.

• The compiler will attempt to sandwich other ops between the
compare and branch to reduce branch delays.

...
;.5

Aut.... '... (Mutln Hopillna) ·1· Aut.... 'no (Muttn Hopillna)



Compiling to BCT

• BCT is very efficient because the branch decision can be
made far in advance.

• Constraints on the use of BCT:

There is only one count register.

Loading the count register takes one fixed point cycle
and four more cycles until a BCT can be done in zero
cycles.
Saving the count register requires a copy to a GPR.

The loop termination test must be convertible to:

Subtract one.

Compare to zero.

Branch not zero.

Linkage conventions do not require that the count
register be preserved.

• Loops are rewritten to use the count register at the same
time as strength reduction is done.

other Branch Optimizations

• Many scheduling tricks.

• Idioms involving branches are recognized.

a<O? -a : a

Becomes:

abs(a)

• Alternate strategies for switch and case type constructs are
recognized to avoid loading the link register.

• The link register need not be saved in "leaf" procedures.

• The link register can often be restored early.

• A procedure that has no functional code after a return can
bypass the return by loading the link register before the call
and then doing a branch instead of a BAL.
This is "foliation".

• Control flow can sometimes be reduced.

if a<b then x = 0;

else x = 1;

becomes:

x = 0;

if a<b then x = 1;

• Boolean variables can be kept in the condition register.
Parallel computations may have to be done in the GPRs.

...
/7

AuguIl1110 (1Ihrt1nHopklnl) ·14-

/0

A.....1l 1110 (Mlrtln Hopklnl)


	f-hopkins 0001.tif
	f-hopkins 0002.tif
	f-hopkins 0003.tif
	f-hopkins 0004.tif
	f-hopkins 0005.tif
	f-hopkins 0006.tif
	f-hopkins 0007.tif
	f-hopkins 0008.tif
	f-hopkins 0009.tif

