A 120 MFLOPS Floating Point Processor

T. Chuk, P. Chai, L. Hu, G. Kao
K. Ng, J. Prabhu, A. Quek,
A. Samuels, J. Yuen,

Agenda

\triangle Project Goals
\triangle FeaturesΔ Algorithms/Implementation- ALU

- MPY
- DSR
\triangle Performance

Project Goals

Δ Versatile building block floating point processor
$\triangle 60 \mathrm{MHz}$ operation with 0.8 micron CMOS
Δ High performance - low latency, high bandwidth
Δ Low power dissipation

Next-Generation Floating Point Processor Block Diagram

Features

Δ Two 64-bit I/O buses with byte-parity
$\triangle 60 \mathrm{MHz}$ operation
$\triangle \pi L$ output levels
$\triangle 370$ pin PGA package
Δ Large 8 ported register file ($32 \times 64 \times 8$ or $64 \times 32 \times 8$)
Δ Fully independent adder and multiplier and I/O operations

5

Features (continued)

Δ Three cycle 32/64-bit Reg-to-Reg operation latency (except divide, sqr)
Δ Full 32-bit integer functions
\triangle IEEE 754 compatible single and double precision
Δ Direct min/max operations

Operation Times

Operation	R-to-R Latency	Bandwidth
FP ADD, SUB	3	1
FP MUL	3	1
INT MUL	3	1
FP SINGLE DIV	7	5
FP DOUBLE DIV	9	7
FP SINGLE SQRT	7	5
FP DOUBLE SQRT	10	8
F-->I	3	1
I-->F	3	1
FP compare	3	1
All other integer ops	3	1

Δ Multiple adders operating in parallel
Δ Correct results selected at the end of the operation
Δ Normal FPU add algorithm takes 6 operations

1. Exponent compare
2. Pre-alignment (right shift of fractions)
3. Add/subtract
4. Re-complement (if needed)
5. Post-normalization (left shift of fraction)
6. Exponent update
\triangle Parallel algorithm cuts operations in half

Case A

1. Exponent compare (pipe 1)
2. Pre-alignment (pipe 1)
3. Add/Subtract (pipe 2)

Case B

1. Subtract/re-complement (pipe 1)
2. Post-normalization
3. Exponent update (pipe 2)

9

MPY
\triangle Full array of CSA enables double precision throughput at 1 result per cycle
\triangle CSA connected in an arithmetic progression scheme, which approaches speed of full Wallace Tree at much reduced complexity (less CSA and interconnects)
\triangle Multiply has 2 cycle latency and 1 cycle through-put for either single precision or double precision

DSR

> Δ Uses polynomial approximation scheme for $S P$
> Δ Uses quadratic convergence scheme for DP
> \triangle CSA array dynamically re-configurable to two half arrays
> Δ Modified booth recoder that accepts inputs in carry-save form as well as 2 's complement form

Chip Statistics

$\triangle 0.8$ micron CMOS process
356 K transistors
530×530 mils*
$\triangle 60 \mathrm{MHz}$ operation**
3 watts*
$\triangle 370$ pin PGA package

* Estimated
** Simulated (typical process, worst case commercial operating conditions)

Chip Comparison

Weitek Floating Point Processor BIT B-2130-10*

Format	IEEE 754	IEEE 754, DEC
Reg File	$64 \times 32 \times 8$	n / a
	$32 \times 64 \times 8$	n / a
SP ALU (cycles)	2	2
DP ALU (cycles)	2	2
SP MPY (cycles)	2	2
DP MPY (cycles)	2	2
SP DIV, SQRT (cycles)	6	15,25
DP DIV, SQRT (cycles)	8,9	25,30
OPERATING FREQ	60 MHz	100 MHz
POWER (max)	$3 W$	28 W
Technology	0.8 micron CMOS	ECL
* B2130/B31 30/84 130 advance information, Bipolar Integrated Technology Inc.		

