HOT CHIPS II 1990 Symposium on High Performance Chips The SPARC Lightning Processor

Bruce D. Lightner Metaflow Technologies, Inc. San Diego, California

Lightning Project A Superscalar+ SPARC Microprocessor

- Based on Metaflow architecture from Metaflow Technologies, Inc. of San Diego, CA.
- Joint development of Metaflow, LSI Logic, Hyundai Electronics.
- SPARC CMOS processor chipset packaged as Sun Mbus-2 "module".
- Estimated performance: Average 100 MIPS with 50 MHz clock (from a peak rate of 200 MIPS).
- Samples scheduled for Q2 1991

Lightning is a trademark of LSI Logic Corporation, SPARC is a trademark of Sun Microsystems, and Superscalar+ is a trademark of Metaflow Technologies, Inc.

Distinguishing Features of SPARC Lightning Processor Metaflow Superscalar+ Architecture

- Four instructions issued per clock (up to 3 integer/floating point instructions and one branch).
- Six parallel functional units (3 integer ALUs, two floating point ALUs, 1 branch unit).
- Dataflow-based out-of-order instruction issue/execution (both memory and ALU operations), in-order completion, with precise traps and interrupts.
- Speculative <u>execution</u> beyond unresolved conditional branch instructions (through multiple basic blocks, with instant state repair on error).
- Above mechanisms are completely transparent to executing program (strict SPARC ABI compatibility).

Lies, Damn Lies, and Benchmarks

Benchmark	IPC	MIPS	MFLOPS	Remarks
Dhrystone (ver 1.1)	2.3	>110	n/a	<u>-</u>
SPECmark (integer)				
gcc	*	*	n/a	
espresso	*	*	n/a	
li	*	*	n/a	
eqntott	*	*	n/a	
SPECmark (FP)	- - -			
spice	*	*	*	
doduc	*	*	*	
nasa7	*	*	*	
m300	*	*	*	
fpppp	*	*	*	
tomcatv	*	*	*	

^{*} To be supplied at conference.

Notes:

- Based on RTL-level simulations of processor, caches, Mbus and DRAM memory, 50 MHz processor clock, compiled using unmodified Sun SPARC compilers.
- 2. IPC = instructions per clock, MIPS = millions of SPARC instructions per second, MFLOPS = millions of floating point operations per second.

INSTRUCTION-LEVEL PARALLELISM DESIGN TRADEOFFS

5

METAFLOW PIPELINE

LIGHTNING:

ISSUE/FETCH BW = 4 instr EXECUTION BW = 6 instr RETIRE BW = 7 instr

IN-ORDER PIPELINE

FETCH FETCH (predicted) De-coupled and ahead of ISSUE IBUF **ISSUE** ISSUE (in-order, speculative) **UPDATE** De-coupled and ahead of EXECUTION (out-of-order) **EXECUTE** DCAF **EXECUTE** (out-of-order) **UPDATE (RETIRE)** UPDATE (in-order, no speculation) RETIRE (in-order) IDEAL BANDWIDTH (BW): Register File Register File ISSUE BW - FETCH BW **EXECUTION BW > ISSUE BW** Memory Memory RETIRE BW > ISSUE BW

Lightning SPARC Mbus Module

Observations Regarding the SPARC Lightning Processor

- Sustained execution with IPC ≈2 common
- Out-of-order issue/execution key to good performance
- Processor constantly "in speculation" (typical basic block is <2 clocks!)
- Relative insensitivity to memory latency for data (due to DCAF)
- Optimal "code scheduling" by compiler not important
- "Delayed instruction" after branch a nuisance (1 delayed instruction = 1/4 "extra" clock)
- Fundamental limits to performance:
 - Memory port bandwidth (single 64-bit port)
 - Branch prediction rate (unwanted speculative execution)
 - Calculated branch address latency (e.g., "jump tables")
 - Instruction cache hit rate