Thinker-IM: An Energy-Efficient Mixed Signal RNN Engine with Computing-in-Memory Techniques and Predictive Execution

Ruiqi Guo¹, Yonggang Liu¹, Shixuan Zheng¹, Ssu-Yen Wu², Peng Ouyang³, Win-San Khwa², Xi Chen¹, Jia-Jing Chen², Xiudong Li³, Leibo Liu¹, Meng-Fan Chang², Shaojun Wei¹, <u>Shouyi Yin¹</u>*

¹Tsinghua University, Beijing; ²National Tsing Hua University, Hsinchu; ³TsingMicro Tech, Beijing; *yinsy@tinghua.edu.cn

Low Power Techniques

<u>1. SRAM-CIM Macro Design and CIM-aware Weights Adaptation</u> Key features of SRAM-CIM macro:

A. Dual-split-control 6T memory cell to achieve XNOR; B. Serial-phase triple sensing controller to support 3-b output

Verification

Demonstration System

Test chip communicates with PC

- neural network weights, BN
- parameters, *etc*,
- testing data;
- configurations;
- recognition result.
- **Oscilloscope measures the working** current

2.6 mm __ **RNN Engine** using 16 CIM SRAM Macros VAD & & Mel Filter Compressed Quantization Data Memory Unit D Main Controller

Chip Summary:

- Process: 65 nm CMOS
- Supply Voltage: 0.9 1.1 V
- Frequency: 5 75 MHZ
- Core Size: 3.1×2 mm²
- **Die Size: 3.7 × 2.6 mm²**
- Neural Energy Efficiency: 5.1 pJ/Neuron @0.9 V, 75 MHZ
- **Arithmetic Energy Efficiency:** 11.7 TOPS/W @0.9 V, 75 MHZ

Key Features:

- A. Multiple SRAM-CIM architecture
- **B.** Muti-bit output SRAM-CIM
- **C.** Low-current training flow for SRAM-CIM architecture
- **D.** Predictive early BN and binarization method