
Part II

Overview of RISC-V SW Ecosystem

Bunnaroath Sou, SiFive

222

RISC-V foundation now > 230 members. Free, open, extensible ISA for all computing devices

RISC-V Open Source Tools Status

444

• Palmer Dabbelt (SiFive): binutils, GCC, GDB, linux, glibc, QEMU
• Kito Cheng (SiFive): GCC and newlib

• Jim Wilson (SiFive): binutils and GCC

• Darius Rad (Bluespec): glibc

• Andrew Waterman (SiFive): binutils, GCC, and glibc

• DJ Delorie (RedHat): glibc
• Andrew Burgess (Embecosm)
• Alex Bradbury (lowRISC): LLVM

Open Standards Foster Collaboration

555

On Compiler

○ GCC and Binutils has been upstreamed

■ since 7.1 and 2.8 (May 2017)

On Libraries

○ Newlib* has been upstreamed

■ since 2.50 (March 2018)

○ Glibc has been upstreamed

■ since 2.27 (February 2018)

On Debugger

○ GDB has been upstreamed

■ since 8.2 (March 2018)

GNU -Based Toolchains

666

● -march=ISA (selects the architecture to target)
○ Controls which instructions set and registers to use

○ Determines set of implementations a program run on

○ Toolchain support three base ISAs (v2.2)
■ RV32I: A load-store ISA with 32, 32-bit GP int registers.

■ RV32E: RV32I with only 16 int registers, for embedded

■ RV64I: 64-bit flavor of RV32I GP int registers are 64-bits

○ Plus these extensions
■ M: Integer Multiplication and Division

■ A: Atomic Instructions

■ F: Single-Precision Floating-Point

■ D: Double-Precision Floating-Point

■ C: Compressed Instructions

○ ISA strings defined by appending extensions to base ISA

○ For example -march=rv32im, -march=rv64imafdc

GCC RISC-V Command Line -march=

777

● Use when a particular operation support
○ For example, this C code

○ Compile directly to a FP multiplication instruction with D extension

○ But compile to an emulation routine without the D extension

GCC RISC-V Emulation function

888

● -mabi=ABI (selects the ABI to target)
○ Controls the calling convention (which arguments are passed into which

registers) and the layout of data in memory

○ Two integer ABIs and three floating-point ABIs, which together are treated

as a single ABI string

○ Two integer ABIs follow the standard ABI naming scheme:

■ ilp32: int, long, and pointers are all 32-bits long. long long is a 64-bit

type, char is 8-bit, and short is 16-bit

■ lp64: long and pointers are 64-bits long, while int is a 32-bit type. The

other types remain the same as ilp32

GCC RISC-V Command Line -mabi= (1)

999

○ Three floating-point ABIs are RISC-V specific addition:

■ "" (the empty string): No floating-point arguments are passed in

registers.

■ f: 32-bit and smaller floating-point arguments are passed in registers.

This ABI requires the F extension, as without F there are no floating-

point registers.

■ d: 64-bit and smaller floating-point arguments are passed in registers.

This ABI requires the D extension.

GCC RISC-V Command Line -mabi= (2)

101010

○ ISA and ABI treated as two separate arguments, eg:

○ -march=rv32imafdc -mabi=ilp32d:

■ Hardware floating-point instructions can be generated and floating-

point arguments are passed in registers.
■ Equivalent to ARM’s GGC -mfloat-abi=hard argument

○ -march=rv32imac -mabi=ilp32:

■ No floating-point instructions can be generated and no floating-point

arguments are passed in registers.
■ Equivalent to ARM’s GGC -mfloat-abi=soft argument

○ -march=rv32imafdc -mabi=ilp32:

■ Hardware floating-point instructions can be generated, but no floating-

point arguments will be passed in registers.
■ Equivalent to ARM’s GGC -mfloat-abi=softfp argument

■ Used when interfacing with soft-float binaries on a hard-float system.

○ -march=rv32imac -mabi=ilp32d:

■ Illegal, ABI requires floating-point arguments are passed in registers

■ ISA defines no floating-point registers to pass them in

GCC RISC-V Treatment of ISA and ABI String

111111

● -mtune=CODENAME selects the microarchitecture to target.

○ Informs GCC about the performance of each instruction, for

target-specific optimizations

○ SiFive have a number of tuning model

GCC RISC-V Command Line -mtune=

121212

● Concept due split between compiler and linker
○ Exist to pass information between the compiler and linker

○ Compiler emit tags, eg R_RISCV_HI20 and R_RISCV_RELAX

○ Allow linker to resolve address in the final output ELF exec

RISC-V Relocation: How it works

131313

RISC-V Linker Relaxation: How it works (1)

● Mechanism for optimizing programs at link-time,

instead of at compile-time
○ Compiler emit tags, R_RISCV_CALL and R_RISCV_RELAX

141414

● Two unconditional control transfer instructions in

RISC-V ISA, jalr and jal
○ jalr, jumps to an absolute address as specified by an

immediate offset from a register

○ jal, jumps to a pc-relative offset as specified by an

immediate.

○ In this example, auipc+jalr pair can address a 32-bit signed

offset from the current PC (0x1007c)

○ While jal can only address a 21-bit signed offset from the

current PC (0x1007c)

○ Because linker knows the call from _start to func fits within

the 21-bit offset of the jal instruction, it uses a single

instruction.

○ A proxy for twice the speed

RISC-V Linker Relaxation: How it works (2)

151515

● Mechanism for handling multiple sets of system libraries
○ eg. 32bits application in 64bits architecture

○ Mixing soft-float and hard-float systems

○ Building a single compiler that targets many RISC-V systems

● Modular ISA, allow multilib implementation to be cleaner
○ Well known naming scheme for all ISA targets

● Standard set of ABIs was already known for RISC-V
○ C type sizes: ilp32 vs lp64

○ Floating-point registers: none, single, single and double

● Derive a set of multilib by using script
○ https://www.sifive.com/blog/all-aboard-part-5-risc-v-multilib

RISC-V Handling of Multilib

161616

#!/bin/bash

for abi in ilp32 ilp32f ilp32d lp64 lp64f lp64d; do

for isa in rv32e rv32i rv64i; do

for m in "" m; do

for a in "" a; do

for f in "" f fd; do

for c in "" c; do

readlink -f $(riscv64-unknown-elf-gcc -march=isamaf$c -mabi=$abi -print-
search-dirs | grep ^libraries | sed 's/:/ /g') | grep 'riscv64-unknown-elf/lib' | grep -
ve 'lib$' | sed 's@^.*/lib/@@' | while read path; do

echo "riscv64-unknown-elf-gcc -march=isamaf$c -mabi=$abi => $path"

done

done

done

done

done

done

done

RISC-V Example Script to Derive Multilib List

171717

riscv64-unknown-elf-gcc -march=rv32i -mabi=ilp32 => rv32i/ilp32

riscv64-unknown-elf-gcc -march=rv32ic -mabi=ilp32 => rv32i/ilp32

riscv64-unknown-elf-gcc -march=rv32iac -mabi=ilp32 => rv32iac/ilp32

riscv64-unknown-elf-gcc -march=rv32im -mabi=ilp32 => rv32im/ilp32

riscv64-unknown-elf-gcc -march=rv32imc -mabi=ilp32 => rv32im/ilp32

riscv64-unknown-elf-gcc -march=rv32imac -mabi=ilp32 => rv32imac/ilp32

riscv64-unknown-elf-gcc -march=rv32imafc -mabi=ilp32f => rv32imafc/ilp32f

riscv64-unknown-elf-gcc -march=rv32imafdc -mabi=ilp32f => rv32imafc/ilp32f

riscv64-unknown-elf-gcc -march=rv64imac -mabi=lp64 => rv64imac/lp64

riscv64-unknown-elf-gcc -march=rv64imafdc -mabi=lp64d => rv64imafdc/lp64d

RISC-V Embbeded Multilib List

181818

riscv64-unknown-linux-gnu-gcc -march=rv32ima -mabi=ilp32 => lib32/ilp32

riscv64-unknown-linux-gnu-gcc -march=rv32imac -mabi=ilp32 => lib32/ilp32

riscv64-unknown-linux-gnu-gcc -march=rv32imaf -mabi=ilp32 => lib32/ilp32

riscv64-unknown-linux-gnu-gcc -march=rv32imafc -mabi=ilp32 => lib32/ilp32

riscv64-unknown-linux-gnu-gcc -march=rv32imafd -mabi=ilp32 => lib32/ilp32

riscv64-unknown-linux-gnu-gcc -march=rv32imafdc -mabi=ilp32 => lib32/ilp32

riscv64-unknown-linux-gnu-gcc -march=rv32imafd -mabi=ilp32d => lib32/ilp32d

riscv64-unknown-linux-gnu-gcc -march=rv32imafdc -mabi=ilp32d => lib32/ilp32d

riscv64-unknown-linux-gnu-gcc -march=rv64ima -mabi=lp64 => lib64/lp64

riscv64-unknown-linux-gnu-gcc -march=rv64imac -mabi=lp64 => lib64/lp64

riscv64-unknown-linux-gnu-gcc -march=rv64imaf -mabi=lp64 => lib64/lp64

riscv64-unknown-linux-gnu-gcc -march=rv64imafc -mabi=lp64 => lib64/lp64

riscv64-unknown-linux-gnu-gcc -march=rv64imafd -mabi=lp64 => lib64/lp64

riscv64-unknown-linux-gnu-gcc -march=rv64imafdc -mabi=lp64 => lib64/lp64

riscv64-unknown-linux-gnu-gcc -march=rv64imafd -mabi=lp64d => lib64/lp64d

riscv64-unknown-linux-gnu-gcc -march=rv64imafdc -mabi=lp64d => lib64/lp64d

RISC-V Linux Multilib List

191919

On Compiler/Assembler

○ Upstreamed in experimental mode as of 8.0

○ Non-experimental support planned for 9.0

○ Compile and run GCC torture suite

■ {RV32I, RV32IM, RV32IFD} + ‘C’

○ Compile and run all torture suite tests

■ for RV64I at O1, O2, O3, and Os

○ MC-layer now support

■ RV32IMAFDC + RV64IMAFDC,

○ CodeGen support

■ RV32IMFDC and RV64I

LLVM -based Toolchains

202020

Upstreamed since 2.12 (April 2018)

Sources

○ https://www.qemu.org/download/#source

Build and Boot instructions

○ https://wiki.qemu.org/Documentation/Platfor

ms/RISCV

Contributors
○ Sagar Karandikar (University of California, Berkeley), Bastian

Koppelmann (University of Paderborn), Alex Suykov, Stefan

O'Rear, Michael Clark and Alistair Francis (Western Digital)

RISC-V Virtual Machine Emulation

212121

OpenOCD

○ Ability to connect to embedded target for debugging

○ Not yet Upstreamed

○ Upstreaming is planned, but low priority

○ https://github.com/riscv/riscv-openocd
○ Tim Newsome, Megan Wachs, Palmer Dabbelt (SiFive)

Open On -Chip Debugger

222222

Upstream Kernel boots

○ Boots on QEMU

■ Since v4.15 (December 2017)

○ Well supported
○ 340+ commits since
○ Alan Kao (Andes), Anup Patel (WD), Aishh Patra (WD),

Christoph Hellwig, David Abdurachmanov, Palmer
Dabbelt, Paul Walmsley (SiFive), Zong Li (SiFive),
Jim Wilson (SiFive)

Linux Kernel and FreeBSD Port

Embedded

242424

• SiFive Freedom Studio
– Eclipse CDT, GNU MCU Eclipse, pre-built GCC, and OpenOCD

– Built on Open Source technology

• AndesSight - Eclipse based IDE for RISC-V

• SEGGER - JLINK Probe and Embedded Studio RISC-V IDE

• Lauterbach - Lauterbach TRACE32 for silicon bring up and debug

• IAR - IAR Embedded Workbench with SiFive support in development

• Ashling - RiscFree C/C++ IDE for development and debug

• Embedded Software and Operating Systems
– Bare Metal

– FreeRTOS

– Zephyr OS

– RTEMS

– Express Logic – Thread X

– Micrium - µCOS

– RIOT

– NuttX

• Imperas - Simulation models and tools for early software development

• UltraSoC - IP and tooling supporting SiFive instruction trace

RISC-V Embedded Software Ecosystem

252525

• Commercial RISC-V Debug

Hardware and Software

– Available in the market for

over a year

– TRACE32 for silicon bring up
and debug

• Support for all SiFive IP and

platforms

– RV32/RV64

– Multicore

– Heterogeneous Multicore

• Collaborate with UltraSoC

– Providing powerful debug,

trace and logic analyzer

tools

Lauterbach

262626

• Commercial RISC-V Debug

Hardware and Software

– Available since late 2017

– JLINK Probe and Embedded
Studio RISC-V IDE

• Support for all SiFive IP and

platforms

– Great support for single

core RV32

– RV64 and Multicore support

in beta now

• SEGGER RTT fully supported

– High Speed communication

with host debugger

SEGGER

272727

• Very well known in the Embedded

Space

– Have been around for a long time

20+ years

– Support many different

architectures

• Very well known for their embedded

toolchain

– The first proprietary RISC-V

Compiler

– Compiler is known for both code

Density and Performance

IAR

282828

FreeRTOS / AWS FreeRTOS

• De facto real time operating system for small,

low-power devices

• Amazon FreeRTOS which extends the FreeRTOS

kernel with software libraries
– Through the effort of Richard Barry

• RISC-V support now available in FreeRTOS Kernel

10.2 (Feb 2019)
– With 10.2.1 added support for RV64

– QEMU emulation of SiFive Hifive1

– OpenISA’s VEGAboard

– Antmicro’s Renode emulator of Microchip M2GL025 Creative

Board

• SiFive will also port FreeRTOS to Freedom Metal

for SiFive devices
– With FreeRTOS examples added to Freedom E SDK and

Freedom Studio

292929

• Zephyr RTOS
– Open Source

– Well defined development cycle

– Performant and scalable

– Strong software stacks

• Zephyr already Support
– HiFive1 Rev B board supported in the latest Zephyr LTS

release

• Used in a real product

– http://badge.antmicro.com/

• Zephyr SDK comes with RISC-V toolchains

• Contributors
– Karol Gugala (Antmicro), Peter Gielda (Antmicro), Nathaniel Graff

(SiFive)

Zephyr - On RISC -V (HiFive1) is Upstream and Well Supported

303030

Getting Started with Zephyr on QEMU

Install Zephyr SDK

● Get Zephyr SDK, and follow the

instructions in Zephyr's

Documentation for your

platform of choice (Linux,

macOS, Windows)

Build a Zephyr example

● source zephyr-env.sh

● cd samples/hello_world

● mkdir build && cd build

● cmake -DBOARD=qemu_riscv32 ..

● make -j$(nproc)

The zephyr elf is in zephyr/zephyr.elf

Running Zephyr in QEMU

● make runGet the Zephyr Sources

● Zephyr RTOS is developed on GitHub. Get the sources by:

● git clone https://github.com/zephyrproject-rtos/zephyr.git

● cd zephyr

The RISC-V foundation published a getting started guide:
https://buildmedia.readthedocs.org/media/pdf/risc-v-getting-started-guide/latest/risc-v-getting-
started-guide.pdf

313131

What is Freedom E SDK

• Embedded development kit providing a command line driven

workflow with Examples and Utilities including BSP’s for SiFive

targets
– SiFive Qemu for E31, S51 CoreIP

– Freedom E310 FPGA board

– SiFive Development Boards

• Examples use Freedom Metal to provide portability

• Open source repository
– https://github.com/sifive/freedom-e-sdk

What is Freedom Metal

• Library for writing Portable, Bare Metal SW for all SiFive devices
– A Bare Metal C application environment

– An API for controlling CPU features and peripherals

– The ability to retarget to any SiFive RISC-V product

– A RISC-V hardware abstraction layer (HAL)

• Uses BSP’s to provide target adaptation

• Open source repository
– https://github.com/sifive/freedom-metal

Open Source Bare Metal SW Stack from SiFive

Freedom Studio

IPDeliveryX DevBoardY IPFpgaZ

TargeXtLib TargetYLib TargetZLib

Freedom Metal

BSP Examples

Freedom E SDK

32

SiFive Freedom Studio

Simulators

SiFive

Freedom-E-SDK

TargetTarget

Segger

J-Link OB
OpenOCD

GNU GDB

Debugger

Eclipse Plug-Ins

Olimex Probe

Freedom Studio provides an Eclipse

based GUI for developing and

debugging Freedom E SDK

applications

https://www.sifive.com

333333

Freedom E SDK New Project Wizard using QEMU

343434

Freedom E SDK New Project Wizard using FPGA Board

353535

• Writes driver .bit file to FPGA via Xc3sprog (Digilent)

– E31 image in FPGA RAM (not Flash)

– E31 image allows OpenOCD to access Flash

• Writes MCS (ihex) file to Flash via OpenOCD (Olimex)

Flashing Arty FPGA Image - not using Vivado

363636

Start debugging

373737

Viewing elements and memory

383838

<project>/bsp/design.reglist file:

zero

ra

sp

gp

tp

t0

t1

t2

fp

s1

a0

a1

a2

a3

a4

a5

a6

a7

s2

...

Viewing registers and terminal output

393939

Viewing disassembly

40

Using Freedom E SDK

● Re quire d

○ GNU Make an d Git

○ Do w n lo ad RISC-V GNU Em be dde d To o lch ain

○ Do w n lo ad RISC-V Ope n OCD o r In s tall Se gge r J-Lin k So ftw are *

○ Do w n lo ad an d bu ild QEMU fro m its git re po

● Clo n e Fre e do m -E-SDK

○ git clo n e --re curs ive h ttps :/ / gith ub.co m / s ifive / fre e do m -e -sdk.git

○ cd fre e do m -e -sdk

■ se t RISCV_ PATH=/ home/ tools-path/ riscv64-unknown-elf-gcc-8.2.0 -2019

● Build in g an Exam ple

m ake PROGRAM= h e llo TARGET= qe m u-s ifive -e 31 so ftw are

● Run Exam ple

m ake s im ulate PROGRAM= h e llo TARGET= qe m u-s ifive -e 31

414141

How Freedom E SDK use Freedom Metal?

DTS

Hello
World

!

qemu-sifive-e31

hello.c

Freedom-Metal

Freedom-E-SDK

G

C

C

m ake s im ulate PROGRAM= h e llo TARGET= qe m u-s ifive -e 31

4242

DTS file - design.dts

Device Tree Source file (DTS) that describe the physical devices of a design or hardware.

/ {

L15: cpus {

L6: cpu@0 {

riscv,isa = "rv64imafdc";

riscv,pmpregions = <8>;

};

};

L14: soc {

L11: axi4-periph-port@20000000 {

compatible = "sifive,axi4-periph-port", "sifive,periph-

port";

ranges = <0x20000000 0x20000000 0x20000000>;

sifive,port-width-bytes = <8>;

};

L5: itim@1800000 {

compatible = "sifive,sram0";

reg = <0x1800000 0x8000>;

reg-names = "mem";

};

};

Node name

Address, Length

(two cells 32 bits value) A phandle

(reference to a node)

Unit address

Property value

Label

Property name

Child-bus-addr, Parent-bus-addr, Length

(three cells - each 32 bits value)

L10: axi4-sys-port@40000000 {

compatible = "sifive,axi4-sys-po

. . .
L1: interrupt-controller@c000000 {

compatible = "riscv,plic0";

. . .
L2: clint@2000000 {

compatible = "riscv,clint0";

. . .
L5: itim@1800000 {

compatible = "sifive,sram0";

. . .

L8: global-external-interrupts {

compatible = "sifive,global-exte

interrupt-parent = <&L1>;

. . .

4343

DTS to BSP Files

L6: cpu@0 {

compatible = "sifive,bullet0", "riscv";

d-cache-size = <32768>;

device_type = "cpu";

riscv,isa = "rv64imafdc";

riscv,pmpregions = <8>;

L4: interrupt-controller {

compatible = "riscv,cpu-

intc";

Interrupt-controller;

. . .
metal.h

#include <metal/memory.h>

#include <metal/drivers/riscv_cpu.h>

#include <metal/drivers/riscv_plic0.h>

#include <metal/pmp.h>

#define METAL_RISCV_PLIC0_C000000_RISCV_NDEV 128UL

static inline int __metal_driver_cpu_hartid(...)

static inline int __metal_driver_cpu_num_pmp_regions(...)

static inline int __metal_driver_sifive_plic0_num_interrupts(...)

{

return METAL_RISCV_PLIC0_C000000_RISCV_NDEV;

}

L11: axi4-periph-port@20000000 {

compatible = "sifive,axi4-periph-port";

ranges = <0x20000000 0x20000000

0x20000000>;

sifive,port-width-bytes = <8>;

. . .L1: interrupt-controller@c000000 {

compatible = "riscv,plic0";

interrupts-extended = <&L4

11>;

reg = <0xc000000 0x4000000>;

riscv,max-priority = <7>;

riscv,ndev = <127>;

metal.default.lds
OUTPUT_ARCH("riscv")

MEMORY

{

ram (wxa!ri) : ORIGIN = 0x80000000, LENGTH =

0x20000000

flash (rxai!w) : ORIGIN = 0x20000000, LENGTH =

0x20000000

settings.mk
RISCV_ARCH=rv64imafdc

RISCV_ABI=lp64d

COREIP_MEM_WIDTH=64

4444

Metal Library referencing BSP Files

Metal header files and settings.mk referenced by Freedom-Metal library during build for a design
(TARGET).

See freedom-e-sdk/bsp/<target>/install/lib/release/libmetal.a

freedom-metal/src/pmp.c

static int _pmp_regions() {

...

return __metal_driver_cpu_num_pmp_regions(current_cpu);

}

int metal_pmp_set_region(struct metal_pmp *pmp,

unsigned int region, ...

{

...

if(region > _pmp_regions()) {

. . .

metal.h & metal-platform.h

#include <metal/memory.h>

#include <metal/drivers/riscv_cpu.h>

#include <metal/drivers/riscv_plic0.h>

#include <metal/pmp.h>

#define __METAL_PLIC_NUM_PARENTS 1

#define METAL_RISCV_PLIC0_C000000_RISCV_NDEV 128UL

static inline int __metal_driver_cpu_hartid(...)

static inline int __metal_driver_cpu_num_pmp_regions(...)

static inline int __metal_driver_sifive_plic0_num_interrupts(...)

{

return METAL_RISCV_PLIC0_C000000_RISCV_NDEV;

}

static inline struct metal_interrupt *

__metal_driver_sifive_plic0_interrupt_parents(...)

{

if (idx == 0) {

return (struct metal_interrupt

*)& metal dt cpu 0 interrupt controller controller;

freedom-metal/src/driver/riscv_plic0.c

void __metal_driver_riscv_plic0_init (...)

{

...

for(int parent = 0; parent < __METAL_PLIC_NUM_PARENTS;

...

num_interrupts =

__metal_driver_sifive_plic0_num_interrupts(...);

intc = __metal_driver_sifive_plic0_interrupt_parents(...);

line = metal driver sifive plic0 interrupt lines();

2

45

Allowing for Portable Software
i nt ma i n (voi d)

{

s t r uc t me t a l _l e d *l e d0_r e d;

s t r uc t me t a l _c pu *c pu0;

s t r uc t me t a l _i nt e r r upt *c pu_i nt r , * t mr _i nt r ;

i nt t mr _i d;

/ / Le t ' s ge t s t a r t wi t h ge t t i ng LEDs a nd t ur n onl y RED ON

l e d0_r e d = metal_led_get_rgb (" LD0" , " r e d") ;

me t a l _l e d_e na bl e (l e d0_r e d) ;

me t a l _l e d_on(l e d0_r e d) ;

/ / Le t ' s ge t t he CPU a nd a nd i t s i nt e r r upt

c pu0 = me t a l _c pu_ge t (0) ;

c pu_i nt r = me t a l _c pu_i nt e r r upt _c ont r ol l e r (c pu0) ;

me t a l _i nt e r r upt _i ni t (c pu_i nt r) ;

/ / Se t up Ti me r a nd i t s i nt e r r upt

t mr _i nt r = metal_cpu_timer_interrupt_controller (c pu0) ;

me t a l _i nt e r r upt _i ni t (t mr _i nt r) ;

t mr _i d = metal_cpu_timer_get_interrupt_id (c pu0) ;

r c = me t a l _i nt e r r upt _r e gi s t e r _ha ndl e r (t mr _i nt r , t mr _i d,

t i me r _i s r , c pu0) ;

…

API Header Files
Thin wrapper that

call/link to the
selected “target”
drivers (library)

libriscv__mmachine__coreip-e31-arty.a
metal.h
riscv,cpu.c
riscv,clint0.c
riscv,plic0.c
sifive,gpio0.c
sifive,uart0.c
….
sifive,local-external-interrupt0.c
sifive,global-external-interrupt0.c

O
n

ly
 l
a
b

e
l!

N
o

 f
ix

 a
d

d
re

s
s

N
o

 k
n

o
w

le
d

g
e
 o

f
C

L
IN

T
/C

L
IC

ID
 d

e
te

rm
in

e
 b

y
 t

a
rg

e
t

libriscv__mmachine__coreip-e21-arty.a
metal.h
riscv,cpu.c
sifive,clic0.c
sifive,gpio0.c
sifive,uart0.c
….
sifive,local-external-interrupt0.c
sifive,global-external-interrupt0.c

design.dts
led@0red {

compatible ="sifive,gpio -
leds";

label = "LD0red";
gpios = <&L8 0>;

};

Machine Header - metal.h
static inline struct metal_gpio *

__metal_driver_sifive_gpio_led_gpio(struct metal_led *led)

{

if ((uintptr_t)led == (uintptr_t)&__metal_dt_led_0red)

{

return (struct metal_gpio

*)&__metal_dt_gpio_20002000;

}

}

Linux

474747

Linux Distributions and FreeBSD - Early Support

484848

Through the works of David Abdurachmanov

● ~20% of Fedora packages built for RISC-V

● Pre-build images available for Qemu and HiFive Unleashed

○ Build farm running, producing nightly images

● No signed RPM yet

● No images for Fedora Workstation/Server

Want to know more/get involve, see

• https://fedoraproject.org/wiki/Architectures/RISC-V

Interest to try it out,

• Self Hosting images available

• https://fedoraproject.org/wiki/Architectures/RISC-V/Installing

Fedora on RISC -V

494949

• Open Software on Open Hardware

• RISC-V Debian Port Goals

– Software-wise, this port will target

the Linux kernel

– Hardware-wise, the port will target

the 64-bit variant, little-endian

• 84% of all Debian packages

• Debian Distro runs on HiFive

Unleashed with SiFive Freedom

U540 SoC

• No Debian installer yet

• See Freedom-U-SDK for current,

Buildroot based

https://github.com/sifive/freedom-

u-sdk

• https://wiki.debian.org/RISC-V

Debian Distro Package Build Status

0% March

65% April

505050

Linux Boot Flow

515151

Zero Stage Bootloader (ZSBL): Mask ROM

● Reset vector of all harts, baked into a mask ROM on die

● Looks at DIP switches and loads a partition from the SPI flash (or SD card in a recovery mode)

First Stage Bootloader (FSBL): SPI Flash

● Loaded from SPI flash into the L2 LIM

● Initializes the DRAM, Ethernet, and PRCI (clock controller)

● Loads a bootloader from the SD card

Berkeley Boot Loader (bbl - First stage bootloader)

● Runs in machine-mode

● Filters the device tree for Linux (disables the S51 hart)

● Contains trap handles for unimplemented instructions

○ rdtime, which traps to the CLINT

○ Floating-point on systems without hardware FP

● Contains an SBI implementation, which says resident during Linux

○ Handles remote fences and IPIs via the CLINT

○ Helper functions for an early debug console

● Loads a flat binary Linux image

Linux Boot on the FU540

525252

Linux boots expects the system to be in the following state

• a0 contains a unique per-hart id

• a1 contains a pointer to device tree, as a binary flattened device tree (DTB)

• Memory is identity mapped

• The kernel's ELF image has been loaded correctly

• Handle impedance mismatch between RISC-V spec and what Linux expects

• Perform "hart lottery," which is a very short AMO-based sequence that picks the

first hart to boot, while the rest spin, until they can proceed

Proceed with a fairly standard Linux early boot process:

• A linear mapping of all physical memory is set up, with PAGE_OFFSET as the

offset

• Paging structures are initialized and then used (BBL boots with paging enabled)

• The C runtime is set up, which includes the stack and global pointers

• A spin-only trap vector is set up that catches any errors early in the boot process

• start_kernel is called to enter the standard Linux boot process

RISC-V Linux Early Boot

535353

• Unconditionally enable the EARLY_PRINTK console via the SBI

• When kernel command line is parsed, and the early arch-specific options are

dealt with, user can only control the amount of physical memory actually used

by Linux

• The device tree's memory map is parsed in order to find the kernel image's

memory block, which is marked as reserved. The rest of the device tree's

memory is released to the kernel for allocation

• The memory management subsystem is initialized, only ZONE_NORMAL is

support

• Any other hart in the system is woken up

• Processor's ISA is read from the device tree, which is used to fill out the HWCAP

field in the ELF auxvec. This allows userspace programs to determine what the

hardware they're executing on looks like. Homogeneous ISA is assume

• Return control back to the upstream kernel code

RISC-V Linux setup_arch

545454

Getting Started

● Freedom Studio from

SiFive.com
○ or Freedom E SDK & Metal

● RISC-V on Qemu
○ https://risc-v-getting-started-

guide.readthedocs.io/en/latest/index.

html

● sw-dev@groups.riscv.org

● #riscv on freenode

	Part II
Overview of RISC-V SW Ecosystem
	Slide Number 2
	RISC-V Open Source Tools Status
	Open Standards Foster Collaboration
	GNU-Based Toolchains
	GCC RISC-V Command Line -march=
	GCC RISC-V Emulation function
	GCC RISC-V Command Line -mabi=		(1)
	GCC RISC-V Command Line -mabi=		(2)
	GCC RISC-V Treatment of ISA and ABI String
	GCC RISC-V Command Line -mtune=
	RISC-V Relocation: How it works
	RISC-V Linker Relaxation: How it works (1)
	RISC-V Linker Relaxation: How it works (2)
	RISC-V Handling of Multilib
	RISC-V Example Script to Derive Multilib List
	RISC-V Embbeded Multilib List
	RISC-V Linux Multilib List
	LLVM-based Toolchains
	RISC-V Virtual Machine Emulation
	Open On-Chip Debugger
	Linux Kernel and FreeBSD Port
	Embedded
	RISC-V Embedded Software Ecosystem
	Lauterbach
	SEGGER
	IAR
	FreeRTOS / AWS FreeRTOS
	Zephyr - On RISC-V (HiFive1) is Upstream and Well Supported
	Getting Started with Zephyr on QEMU
	Open Source Bare Metal SW Stack from SiFive
	SiFive Freedom Studio
	Freedom E SDK New Project Wizard using QEMU
	Freedom E SDK New Project Wizard using FPGA Board
	Flashing Arty FPGA Image - not using Vivado
	Start debugging
	Viewing elements and memory
	Viewing registers and terminal output
	Viewing disassembly
	Using Freedom E SDK
	How Freedom E SDK use Freedom Metal?
	DTS file - design.dts
	DTS to BSP Files
	Metal Library referencing BSP Files
	Allowing for Portable Software
	Linux
	Linux Distributions and FreeBSD - Early Support
	Fedora on RISC-V
	Debian Distro Package Build Status
	Linux Boot Flow
	Linux Boot on the FU540
	RISC-V Linux Early Boot
	RISC-V Linux setup_arch
	Getting Started

