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RESEARCH TESTCHIP GOALS

NVIDIA RESEARCH OVERVIEW

Research Teams:

Graphics, Deep Learning, Robotics,  Computer 
Vision, Parallel Architectures, Programming 
Systems, Circuits, VLSI, Networks

Recent Works:

TESTCHIPS

Develop and Demonstrate Underlying Technologies for Efficient DL Inference

RC12

RC16

RC17

RC13

RC18

RTX NVSwitch

CuDNN CNN Image Inpainting

Noise-to-Noise Denoising

Progressive GAN

• Scalable architecture for 

DL inference acceleration

• High-productivity Design 

Methodology

This Work
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VAST WORLD OF AI INFERENCE
Creating A Massive Market Opportunity

GENERAL PURPOSE COMPUTERS EMBEDDED COMPUTERS EMBEDDED DEVICES
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TARGET APPLICATIONS
Image Classification with Convolutional Neural Networks

AlexNet

DriveNet ResNet

Deep Learning Models

Different MCM configurations

Image Classification

Ref: Krizhevsky et al., NeurIPS, 2012. Bojarski et al., CoRR 2016. He et al., CoRR 2015 
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SCALABLE DEEP LEARNING 
INFERENCE ACCELERATOR
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MULTI-CHIP-MODULE (MCM) ARCHITECTURE

Demonstrate:
Low-effort scaling to high inference performance

Ground Reference Signaling (GRS) as an MCM interconnect

Network-on-Package architecture

Advantages:
Overcome reticle limits

Higher yield

Lower design cost

Mix process technologies

Agility in changing product SKUs

Challenges:
Area and power overheads for inter-chip interfaces

Ref: Zimmer et al., VLSI 2019

Package

Chip
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HIERARCHICAL COMMUNICATION ARCHITECTURE
Network-on-Package (NoP) and Network-on-Chip (NoC)

6x6 mesh topology connects 36 chips in package.

A single NoP router per chip with 4 interface ports to NoC

Configurable routing to avoid bad links/chip

~20ns per hop, 100 Gbps per link (at max)

4x5 mesh topology connects 16 PEs, one Global PE, 
and one RISC-V

Cut-through routing with Multicast support

10ns per hop, ~70Gbps per link (at 0.72V)

NETWORK-ON-CHIP (NoC)

NETWORK-ON-PACKAGE (NoP)
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GROUND-REFERENCED SIGNALING (GRS)

High Speed

11-25 Gbps per pin

High energy efficiency

Low voltage swing (~200mV)

0.82-1.75 pJ/bit

High area efficiency

Single-ended links

4 data bumps + 1 clock bump per GRS link

High Bandwidth, Energy-efficient Inter-chip Communication

GRS Macro

Ref: Poulton et al., JSSC 2019
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SCALABLE DL INFERENCE ACCELERATOR
Tiled Architecture with Distributed Memory

Ref: Zimmer et al., VLSI 2019

Package

Chip

Vector 

MAC

Vector 

MAC

Vector 

MAC

Vector 

MAC

Vector 

MAC

Vector 

MAC

Vector 

MAC

Vector 

MAC

Manager

Input 

Buffer

Accumulation Buffer

+ +
Manager

AddrGen

Addr

Gen

Distributed

Weight Buffer

R

Router InterfaceSerdes

PPU

Trunc ReLU

Pooling Bias

Ref: Sijstermans et al., HotChips 2018
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SCALABLE DL INFERENCE ACCELERATOR
CNN Layer Execution

H

W

C

R
S

P

Q

K

K

C

Input Activations Output ActivationsWeights

Distribute weights across PEs

Load Input Activation to Global PE

RISC-V configures control registers

Stream input activations to PEs 

Store output activations to Global PE
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SCALING DL INFERENCE ACROSS NOP/NOC
Tiling Convolutional Layer Across Chips and Processing Elements
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Core area 111.6 mm2

Voltage 0.52-1.1 V

Frequency 0.48-1.8 GHz

FABRICATED MCM-BASED ACCELERATOR
NVResearch Prototype: 36 Chips on Package in TSMC 16nm Technology

High speed interconnects using 
Ground Reference Signaling (GRS)

100 Gbps per link

Efficient Compute tiles

9.5 TOPS/W, 128 TOPS

Low Design Effort

Spec-to-Tapeout in 6 months with 

<10 researchers

Ref: Zimmer et al., VLSI 2019
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HIGH PRODUCTIVITY 
DESIGN METHODOLOGY
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HIGH-PRODUCTIVITY DESIGN APPROACH
Enables faster time-to-market and more features to each SoC

RAISE HARDWARE DESIGN LEVEL 
OF ABSTRACTION

Use High-level languages

e.g. C++ instead of Verilog

Use Automation

e.g. High-Level Synthesis (HLS)

Use libraries/generators

MatchLib

AGILE VLSI DESIGN

Small teams, jointly working on 
architecture, implementation, VLSI

Continuous integration with  automated 
tool flows

Agile project management techniques

24-hour spins from C++-to-layout
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OBJECT-ORIENTED HIGH-LEVEL SYNTHESIS

Leverage HLS tools to design with C++ and SystemC models

MatchLib: Modular Approach To Circuits and Hardware Library

“STL/Boost” for Hardware Design
Synthesizable hardware library developed by NVIDIA research

Highly-parameterized, high QoR implementation

Available open-source: https://github.com/NVlabs/matchlib

Latency-Insensitive (LI) Channels
Enable modularity in design process

Decouple computation & communication architectures

“Push-button” C++-to-gates flow

Ref: Khailany et al., DAC 2018

6 months from spec-to-tapeout
with <10 engineers

MatchLib

(C++/SystemC)

C++ simulation 
(Functional & Perf. verif)

HLS

RTL

LI Channels

(SystemC)

Architectural Model 

(C++/SystemC)
Verification Testbench

(SystemC)

https://github.com/NVlabs/matchlib
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PROCESSING ELEMENT IMPLEMENTATION
Reuse, Modularity, Hierarchical Design
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AGILE VLSI DESIGN TECHNIQUES 
Daily “C++ to Layout” Spins

GDSGates

Syn (2 hrs)HLS+Verilog gen (3 hrs) Place & Route (12 hrs)

RTL
C++

void dut () {

if (rst.read() == 1) {

count =  0;

counter_out.write(count);

} else if (enable.read() == 1) {

count = count + 1;

counter_out.write(count);

}

}

QoR

Agile, incremental approach to design closure during march-to-tapeout phase

Small, abutting partitions for fast place and route iterations

Globally asynchronous locally synchronous pausible adaptive clocking scheme

Fast, error-free clock domain crossings

“Correct by construction”  top-level timing closure

RTL bugs, performance, and VLSI constraints converge together

Ref: Fojtik et al., ASYNC 2019



18© NVIDIA 2019

EXPERIMENTAL RESULTS
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MEASUREMENT SETUP

Measurements begin after weights and 
activations are loaded from FPGA DRAM

Weights are loaded to PE memory 

Activations are loaded to Global PE

Operating points
Max. Performance: 1.1V

Min. Energy: 0.55V
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RESULTS: WEAK SCALING WITH DRIVENET

PERFORMANCE ENERGY EFFICIENCY
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Scaling to 32 chips achieves 27X improvement in performance over 
1 chip.

Energy proportionality in core energy consumption with weak scaling.

GRS energy can be reduced with sleep mode.

Ref: Bojarski et al., CoRR 2016

(Voltage: 1.1V) (Voltage: 0.55V)
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RESULTS: STRONG SCALING WITH RESNET-50

PERFORMANCE ENERGY EFFICIENCY

Scaling to 32 chips achieves 12X improvement in performance 
over 1 chip at Batch = 1. 

Communication and synchronization overheads limit speed-up.

High energy efficiency at different scales.

Small overhead from communication as we scale number of chips.

Ref: He et al., CoRR 2015
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SUMMARY
NVResearch Test Chip

Package

Chip
Scalable Inference Accelerator 

Uses MCM to address different markets with one architecture

0.11 pJ/Op (8b) and 128 TOPS (111.6 core mm2) across 36 chips 
connected via Ground-Referencing Signaling in a single package

Achieved 2.5K images/sec with 0.4 ms latency on 
ResNet-50 batch = 1

High Productivity Design Methodology

Enables faster time-to-market and more features to each SoC

10X reduction in ASIC design and verification efforts
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