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O U T L I N E

Goals

FSD Computer

FSD Chip

Neural Net Accelerator

Results



P L A T F O R M  G O A L S

Focus exclusively on 
Tesla requirements

Retrofit existing HW2.x vehicles

Lower part costs to enable 
redundancy architectures

Safety & Security

Sub 100W

Reduce Software migration effort

Autopilot hardware Features &
Performance to support FSD



F U L L  S E L F  D R I V I N G  C O M P U T E R

Dual Redundant SOCs

Redundant Power supplies

Backward compatible connectors and form factor

Overlapping camera field with redundant paths



Actuator ECUsSensors
Cameras – Radar – GPS – Maps – IMU –

Ultrasonic – Wheel Ticks – Steering Angle

D R I V I N G  T H E  C A R



F S D  C H I P  G O A L S

> 50 TOPS of neural network performance

High utilization (~80%)

• Optimized for batchsize of one

Sub 40W/Chip

• Best in class power efficiency for Inference

• Latencies and design style of CPUs

GPU & CPUs  for post processing & general 
purpose needs

Security & Safety needs

Modular to enable various platform redundancy 
uses



F S D  C H I P

14nm FinFET CMOS

260 mm2, 6 billions transistors

AEC Q100

37.5 x 37.5mm  FCBGA

Already in production



F S D  C H I P

Compute dominant chip

GPU 
x1

CPU
x12

NNA
x2 

ISP

+

Vid.

Enc
Tesla designed NN accelerator

Proven industry IPs for 
standard functions:

• CPUs

• GPU

• ISP

• H.265 video encoder 
• Memory controller

• PHYs

• On chip interconnect

• Peripherals

Safety & 

Security



N N  A C C E L E R A T O R

2 Independent instances

2Ghz+ Design

96x96 MACs ( 36.8 TOPS/NNA)

Hardware SIMD, ReLU & Pool units

32MB SRAM/instance
• Bandwidth Optimized

Programs resident in SRAMs

Simple programming model



D E V E L O P M E N T   C H A L L E N G E S

Short dev cycle 

• 14 months from Arch to Tape out

Simplified implementation

• Choosing proven IPs

• Simpler clock and power distribution

Memory density &  speeds

Balanced programmability, flexibility within 
fast paced development

Simulation challenges ( Esp. NNA)



N N A  D E S I G N  M O T I V A T I O N

Example convolutional neural network

99.7% of operations are multiply accumulates

Speeding up just MACs, by orders of magnitude, makes Quantization/Pooling more performance sensitive

Dedicated Quantization and Pooling HW to speed things all around

A single convolution is a 7 deep nested for loop:

1. For each Image

2. For each Output Channel

3. For each Output X position

4. For each Output Y position

5. For each Input Channel

6. For each Input Y within kernelY

7. For each Input X within kernelX

Inception like CNNs



C O N V O L U T I O N  R E F A C T O R E D  F L O W

 Merge Output X & Output Y to create larger input to process

 Process OutputX.Y and Output Channel 96 at a time.

1. For each Image

2. For (Output X * Output Y), step 96

3. For each Output Channel, step 96

4. For each Input Channel

5. For each Input Y within KernelY

6. For each Input X within KernelX



O U R  C O M P U T E  S C H E M E

1

Outputs

96x96

Maximum Data sharing (Reduced SRAM and DRAM activity)

Minimized Data shifting power

Further Power reduction with smarter shifting

Increased compute Bandwidth Utilization

Acc (30b) = 8b x 8b + Acc 

SIMD Lanes

Mul-Acc

Array



D E S I G N  P H I L O S P H Y

Flexible state machine based control logic to 
reduce control power overheads

• Special complex Ops for fusing commonly used 

sequences like  RELU-Shift-Sat

• Loop constructs built into state machines

Eliminate DRAM reads/writes

Minimize SRAM reads 

Optimized MAC switching power
• In place Data Reuse vs result movement

Single clock domain

DVFS enabled power & clock distribution

* Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014



I N S T R U C T I O N  S E T

DMA Read

DMA Write

Convolution

Deconvolution

Inner-product

Scale

Eltwise

Stop

Opcodes Parameters Dependencies Extensions

Kernels Params

DMA params

Compression/

Decompression

Pre-calculated hints

Loops

SIMD Sequences

Complex Operations

Flags

Errors

Synch

Compact instruction set yet Powerful and Flexible

Limited Out of order  (DMA Rd, DMA Wr and Compute can be OOO & Simultaneous)

32B  to 256B



N N A  M I C R O A R C H I T E C T U R E

Mul Acc Array

96x96

Data Aligners

Weight

buffers

S

R

A

M

B

A

N

K

S

Block 

CacheDMA Rd

DMA Rd

Conv 

SIMD 

DMA Wr

DMA Rd

Conv

Network

Programs

Commands Deconv Pooling

SIMD Lanes

Addr0

Addr1

Addrn

Data

Address

Cache

Req Count

Estimator

Data 

Miss Addr Rd Req

Rd Req

Nxt

Addr

Wr Coalescing Buf

Address Sequencer
Data Sequencer

Bk End DP

Weight

Address

96+

Base BLK

Addr
Wt Addr

Control & 

Status

Cmd Q

Command Sequencer

128B

256B

128B

DMA Rd

Conv 

SIMD   

Conv

..

Network 

Sequencer

32MB



S I M D  D A T A P A T H

Programmable SIMD unit

Rich Instruction set
• Signed/Unsigned INT & FP32 arithmetic

• Predication support for all instructions

Pipelined implementation of Quantization
• Fuses ReLu, Scale and Normalization layers

Full SIMD Program support
• Argmax, Exponential, Sigmoid, Tanh and 

other functions

32b x 
12b Mul

Saturate

44b Add

Shift/Rnd 8b/16b/32b 

Accumulator out<31:0>

32b Register File

FADD/FMUL/ 
FMA/F2I/I2F

Offset<43:0>

Scale<11:0>

Output<7:0>

SrcA SrcASrcB
SrcC SrcB

SrcC

ReLu & 

Quantization

Packed 

Int
FP32



P O O L I N G  H A R D W A R E

Average and Max pooling support

Built for most common small pooling sizes

Rearranges output pixels to implement faster pooling

Average pooling implemented with scaled reciprocals to avoid slow divide operation

Larger pooling sizes are processed in MAC datapath

96B x96B

Pooling Array

with Byte level 

Controls

A

L

I

N

G

N

E

R

96 Poolers

Max or 

Average 

Kx.Ky

96  Effective 

Divides

1/(Kernel size)

Using Scale 

Reciprocal
Input – 96B

Output 96B



R E S U L T S

Performance



R E S U L T S

Power



R E S U L T S

Cost

0.8 x



S U M M A R Y

Completely optimized SOC from scratch

Outstanding Perf/W for Tesla’s networks with NNA

Enables full redundancy at optimal cost

You can own one today

FSD Computer will help enable new safety and autonomy levels of the future

S I M P L E  - P O W E R F U L  - E F F I C I E N T
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