A Programmable Embedded Microprocessor for Bit-scalable In-memory Computing

Hongyang Jia (<u>hjia@princeton.edu</u>), H. Valavi, Y. Tang, J. Zhang, N. Verma

HotChips 2019

Digital Acceleration

10-100× gains in <u>compute</u> energy efficiency & speed

Typical Instruction Energy Breakdown

BUT, not data movement & memory accessing

Focusing on Embedded Memory (SRAM)

• Even models for Edge AI can be large

Data Type	Application	Model	# Params
Vision	Image classification	ResNet-50	26M
	Object detection	SSD300	24M
Language	Keyword spotting	Deep Speech 2	38M
	Machine translation	Base Transformer	50M

• ...BUT, reducing bit precision makes feasible to store on chip

Outline

1. Basics of In-Memory Computing (IMC)

- Amortizing data movement
- 2. IMC challenges
 - Compute SNR due to analog operation

3. High-SNR capacitor-based (charge-domain) IMC

4. Programmable heterogeneous IMC architecture

• Bit-scalability, integration in memory space, near-memory data path

5. Prototype measurements

• Chip measurements, SW libraries, neural-network demonstrations

Typical Ways to Amortize Data Movement

 Reuse accessed data for compute operations

 Specialized (memory-compute integrated) architectures

In-Memory Computing (IMC) to Amortize Data Movement

Limited by Analog Computation

Use analog circuits to 'fit' computation in bit cells
 → Compute SNR limited by circuit non-idealities (nonlinearity, variation, noise)

Where does IMC Stand Today?

10e4 Khwa, ISSCC'18, 65nm Zhang, VLSI'16, 130nm Normalized Throughput ★ ІМС Not IMC Valavi, VLSI'18, 65nm 10e3 (GOPS/mm²) Jiang, Lee, ISSCC'18, 65nm VLSI'18, 65nm Moons, ISSCC'17, 28nn Ando, VLSI'17, 65nn 10e2 Biswas, ISSCC'18, 65nm Shin, ISSCC 17, 65nm Bankman, Yin, VLSI'17, 65nn ISSCC'18, 28nm Chen, ISSCC'16, 65nm 10 Gonug. **ISSCC'18, 65nm** Yuan, VLSI'18, 65nm 10e-2 10e-1 10 10e2 10e3 Energy Efficiency (TOPS/W)

... BUT, limited scalability (size, workloads, architectures)

Moving to High-SNR Analog Computation

Charge-domain computation based on capacitors

 \rightarrow capacitances set by geometric parameters, <u>well controlled in advanced nodes</u>

Metal cap. above bit cell

- 1.8× area of 6T cell
- ~10x smaller than equal digital circuit

[H. Valavi, VLSI'18]

Previous Demonstration: 2.4Mb, 64-tile IMC

Neuron Transfer Function

	Moons, ISSCC'17	Bang, ISSCC'17	Ando, VLSI'17	Bankman, ISSCC'18	Valavi, VLSI'18
Technology	28nm	40nm	65nm	28nm	65nm
Area (mm ²)	1.87	7.1	12	6	17.6
Operating VDD	1	0.63-0.9	0.55-1	0.8/0.8 (0.6/0.5)	0.94/0.68/1.2
Bit precision	4-16b	6-32b	1b	1b	1b
on-chip Mem.	128kB	270kB	100kB	328kB	295kB
<u>Throughput</u> (GOPS)	400	108	1264	400 (60)	18,876
TOPS/W	10	0.384	6	532 (772)	866

- 10-layer CNN demos for MNIST/CIFAR-10/SVHN at energies of 0.8/3.55/3.55 µJ/image
- Equivalent performance to software implementation

Need Programmable Heterogeneous Architectures

Matrix-vector multiply is only 70-90% of operations

 \rightarrow IMC must integrate in programmable, heterogenous architectures

Programmable IMC

Bit-Parallel/Bit-Serial (BP/BS) Multi-bit IMC

Word-to-bit (w2b) Reshaping Buffer

(B_x: Input-vector bit precision, E.g., 2b)

Data-transfer Analysis

Near-memory Datapath (NMD)

Prototype

Technology (nm)	65	
CIMU Area (mm ²)	8.5	
V _{DD} (V)	1.2 0.85	
On-chip mem. (kB)	74	
Bit precision (b)	1-8	
Thru.put (1b-GOPS/mm ²)	0.26 0.10	
Energy Eff. (1b-TOPS/W)	192 400	

Recent work has moved to advanced CMOS nodes

→ Observe energy/density scaling like digital, while maintaining analog precision

Column Computation

Summary				
Tech. (nm)	65	F _{CLK} (MHz)	100 40	
V _{DD} (V)	1.2 0.7/0.85	Total area (mm ²)	13.5	
Energy Breakdown @V _{DD} = 1.2V 0.7V (P/D MEM, Reshap. Buf), 0.85V (rest)				
CPU	52 26	CIMA ¹	20 4 0 7	
(pJ/instru)	52120	(pJ/column)	20.4 9.7	
DMA	135 70	ADC ¹	3 56 1 79	
(pJ/32b-transfer)	10.0 7.0	(pJ/column)	0.00 1.79	
Reshap. Buf. ¹	35 12	Dig. Datapath ¹	1/1 7 8 3	
(pJ/32b-input)	00112	(pJ/output)	17.710.0	

¹Breakdown within CIMU accelerator

Characterization and Demonstrations

Development board

Application-mapping Flows

Training/Inference Libraries

<u>1. Deep-learning Training Libraries</u> (Keras)

Standard Keras libs:

```
Dense(units, ...)
Conv2D(filters, kernel_size, ...)
...
```

Custom libs: (INT/CHIP quant.)

• • •

2. Deep-learning Inference Libraries (Python, MATLAB, C)

High-level network build (Python):

```
chip_mode = True
outputs = QuantizedConv2D(inputs,
    weights, biases, layer_params)
outputs = BatchNormalization(inputs,
    layer_params)
```

Function calls to chip (Python):

Embedded C:

```
chip_command = get_uart_word();
chip_config();
load_weights(); load_image();
image_filter(chip_command);
read_dotprod_result(image_filter_command);
```

Conclusions

Matrix-vector multiplies (MVMs) are a little different than other computations \rightarrow high-dimensionality operands lead to data movement / memory accessing

Capacitor-based IMC enables high-SNR analog compute

→ enables scale and robust functional specification of IMC for architectural design

Programmable IMC is demonstrated (with supporting SW libraries)

→ physical IMC tradeoffs will drive specialized mapping/virtualization algorithms

Resent work has moved to advanced nodes

 \rightarrow energy and density scaling similar to standard digital logic

Acknowledgements: funding provided by ADI, DARPA, NRO

Backup

IMC Tradeoffs

<u>CONSIDER</u>: Accessing *D* bits of data associated with computation, from array with \sqrt{D} columns $\times \sqrt{D}$ rows.

Metric	Conventional	In-memory
Bandwidth	$1/D^{1/2}$	1
Latency	D	1
Energy	$D^{3/2}$	~ <i>D</i>
SNR	1	~1/D ^{1/2}

- IMC benefits energy/delay <u>at cost of SNR</u>
- SNR-focused systems design is critical (circuits, architectures, algorithms)

Algorithmic Co-design(?)

Chip-specific weight tuning

Chip-generalized weight tuning

decisions

[S. Gonu., *ISSCC*'18]

(weights)

low swing analog

computation

buffer

inputs

E.g.: BNN Model (applied to CIFAR-10)

backward

M-BC Layout

E.g., MOM-capacitor matching (130nm):

>14-b capacitor matching across M-BCs>14k IMC rows for matching-limited SNR

[H. Valavi, VLSI'18]

IMC as a Spatial Architecture

Assume:

- 1k dimensionality
- 4-b multiplies •
- 45nm CMOS •

Operation	Digital-PE Energy (fJ)	Bit-cell Energy (fJ)
Storage	250	
Multiplication	100	50
Accumulation	200	
Communication	40	5
Total	590	55

Application mapping

IMC engines must be 'virtualized'

- \rightarrow IMC amortizes MVM costs, not weight loading
- → Need new mapping algorithms (physical tradeoffs very diff. than digital engines)

Ex.: XXY sets reuse of filter weights

W^{*n*}_{*i,j,z*} (*N* - *I*×*J*×*Z* filters)

Weight Accessing:

- E_{DRAM→IMC}/4-bit: 40pJ
- Reuse: $X \times Y$
- E_{MAC,4-b}:50fJ

Activation Accessing:

- $E_{DRAM \rightarrow IMC}/4$ -bit: 40pJ
- Reuse: $N \times I \times J$ (10-20 lyrs
- E_{MAC,4-b}: 50fJ

