HOT CHIPS 31

- 18 03] °

Key points R

Unprecedented scalable ultra-efficient PIM* architecture and chip
* 4 Gb DRAM memory chips, embedding 8 processors on die

* Delivered as standard DDR4 2400 DIMM modules with 16 chips

e Server CPU helped by thousands of additional cores

e Boosting 20x data-intensive applications

* Power efficiency 10x better
* By reducing drastically CPU-DRAM data movement

e At marginal cost
up

Processing In Memory

e Put processors INSIDE the main memory die
* Tackling dominant energy cost of data movement

L , . Take away
* First |mplementat|on to meet success conditions
* Up-to-date unmodified DRAM process DRAM PIM tackles the
* Mainstream memory interface & language support dominant energy cost of
data movement
* PIM more relevant than ever
* More data intensive applications PIM benefits more relevant
e Memory wall & end of Moore’s law than ever
- e New workloads
* Big data players * New players
* Computing efficiency now critical
* Have scale & skills to adapt algorithms & SW u p

UPMEM PIM-DRAM big data accelerator

[U P M E M Dl M M S E 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMERA LAPRAEM UPMEN
P Pl

* Replacing standard DIMMs
 DDR4 R-DIMM modules

* 8GB+128DPUs (16 PIM chips) S eeesens T
PIM server: Typically with 128GB DRAM/2048 DPUs
» UPMEM PIM-DRAM chips Take away
 4Gb DDR4 2400 DRAM + 8 DPUs @500MHz Scalable as compatible with

* Current servers

 Single die, standard 2x nm DRAM process + Unmodified DRAM process

* Massive additional compute & bandwidth c ISREITITELS 5 |
« 2TB/s DRAM-DPU BW for 128GB+2048 DPUs config >2MP!es &apps available
» Easily programmable SDK: C-programmable up

Standard DRAM package & DIMM

4Gb DRAM DDR4 2400

+ 8DPUs @ 500MHz

1GB/s DRAM-DPU bandwidth
Standard DRAM package
~1cm?2 die — ~1,2W

gE-vio2” S

a '§§ uma
o7 e E

5. E -

":E

L3RS

) b

bt e e e R B e - 333 2F 2o

DDR4 2400 R-DIMM module p

UPMEM PIM massive benefits

. Energy efficiency when Server + Server +
* Massive SDEEd-Up computing on or off PIM normal
* Massive additional compute & memory chip DRAM _| _DRAM
bandwidth DRAM to processor pJ ~150 ~3000*
. _ 64-bit operand
* Massive energy gains Operation ol ~20 ~10*
* Most data movement on chip
Server consumption w ~700W ~300W
° LOW cost speed-up ~ x20 x1
» Affordable programming TCO gain ~ x10 x1
1 H *Exascale Computing Trends: Adjusting to the “New Normal” for Computer
° M a SS IVG RO I / TCO ga I n S Architecture; John Shalf, Computjing in Science & engineering, 2013

CopyEN UPMIEN® 2019 rorcwesa JUEM

Server with thousands of DPUs at work

Speed-up and TCO gain compared to same x86 server

Field Application Benefits of PIM with standard DRAM
Pattern Genomics Speed up comparison with x25 faster, evaluated by INRIA for DNA mapping* **
matching reference data x41 for NextGenMap with TCO 26x lower

Speed up difference detections x25 evaluated by UPMEM/INRIA for Illumina : DNA
variant calling®, TCO 20 times better***

Full mapping + variance analysis x22 evaluated by UPMEM/INRIA (34’ vs 30h)****

Index DB Index Search Speed up queries & latency x18 speed-up - throughput, 1/100% latency
x14 TCO gain
Analytics Skyline multi- More throughput efficient, easily 14x higher throughput evaluated by UCR*****
criteria analysis scalable 10x better energy consumption

up

Multiple profiles for accelerated apps

No need to saturate bandwidths (DRAM or orchestration) nor minimize calculation

B DNA mapping-Pattern matching B DNA Variant calling - Decompress & compare ® DNA Blast - Search and extend
B Decode & parse DB index B Skyline - Multi-criteria sort B Pathlen - Sparse matrix multiplication
W Dijkstra local - Graph search B MD?5 - Hash

ndald Ll L

1-TCO gain (O to 2- Acceleration 3-# DPUsused 4-#DPUcycles 5-#threads 8- Orchestration 10 - x86<->PIM 11-Total DRAM 12- DPU

25) gain (0 to 45) (0to 4096) perinput Byte (0 used (Oto 16) time ratio (0to system bandwidth used bandwidth
to 19000) 100%) bandwidth within PIM effective usage
consumed (Oto system (O to (0 to 100%)
110 GB/s) 2080 GB/s)

CopyEN UPMIEN® 2019 rorcwesa JUEM

The Hurdles on the road to the Graal

* DRAM process highly constrained

. o Take away
e 3x slower transistors than same node digital
Process DRAM vs. ASIC
 Logic 10 times less dense vs. ASIC process * Far less performing

. . . + Wafers 2x ch . ASIC
e Routing density dramatically lower S EEa RS SR C

* 3 metals only for routing (vs. 10+), pitch x4 larger Leapfrogging Moore’s law

» Strong design choices mandatory misfe‘egl:z‘;'zzxIxellgm

* Very low cost

But the PIM Graal is worth it |
up
oo B

Building a logic flow on a DRAM process

* Digital library & implementation flow Take away
created |
ASIC-like framework

e 4 different SRAM cuts created . Logic cell library

* 320 bits to 16 KB > el e -

+ Single port and dual ports * |ogic design & validation flow
* DRAM IP Minimal DRAM IP modification

* Modification to be minimized > DY et i 2n @lurtise

_ _ mostly unmodified DRAM chip
* The asynchronous interface increases the

logic complexity

up

Building a fast processor using slow transistors

Take away
* 14 pipe stages needed to reach 500 MHz DPU
: . e 1 instruction / cycle on
* Interleaved pipeline ulti-threaded code
* No operand bypass, no stall signals * 1GB/s from DRAM

8B to 2KB transfer
e 24 hardware threads

* 100 % performance achieved when 11 threads Equivalent to 1/6™ of Xeon

or more are running core on PIM applications
(branchy, integer only code)

PIM server = 2048 DPUs

up

Even
Reg
File

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1

READOP2

READOP3

FORMAT
ALU1
ALU2
ALU3
ALU4

MERGE1

MERGE2

|

t

IRAM

WRAM

Multithreading allows a long

pipeline

to remain efficient

—> Address & write data
—> Read data

DISPATCH . .
FETCH1/2/3
READOP1/2/3
FORMAT...
ALU1/2/3/4
MERGE1/2.

...... Thread selection

...... Instruction fetch

..... register file access

...... operand formating

...... Operators & WRAM access

...... result formating

up

Heavy multi-threading implies
explicit memory hierarchy

* No data cache, 64 KB SRAM (WRAM) instead Take away
* Too much threading for caches ,
Tightly coupled
* No instruction cache, 24 KB SRAM (IRAM) memories instead
instead of caches:
 Too many threads
* DMA instructions move data between DRAM for cache
and WRAIVl/IRAIVI e With efficient

] , DMA instructions
* Executed by an autonomous DMA engine, no/little

effect on pipeline performance

up

PIM chip Block Diagram

Control/status Interface
(Common to the 8 DPUs)

DDR4 interface (a.k.a. SPINE)
(Connected to the 8 DRAM arrays)

A A
r_"_'_L_'_'_'_'_'_'_'_1'_i'_
v v
€—> Instruction
memory
<>
DRAM Array
Pipeline DMA 64 MByte
64-bit wide access port
<> Working
Memory

X8

PIM
chip

An ISA optimized for the implementation styles
that are realistic on DRAM process

Specific 32-bit ISA Take away

* Aiming only scalar/in order/multithread
implementation

ARM® or RISC-V® discarded

¢ PFOViding eff|C|ent thread context Optimized ISA according to
* Clean target of LLVM/CLANG context
* Regular triadic ISA e Multithreaded, scalar, in
: . : d
 Allowing out of the box compilation of 64-bit e
C code o . Publicly documented ISA
* Some 64-bit instructions
* Helpers for 64-bit compilation u p

A powerful ISA despite DRAM limitation

Beside supporting only 8x8 single cycle
multiplies, DPU ISA more powerful than other Take away
32-bit ISA.

* 0 cycle conditional jump on result properties ISA provides |
e With rich set of jump conditions performance despite

DRAM
 SHIFT+ADD/SUB instructions PIOEESS

* Rich set of logic instructions i e IS0
* Including NAND, NOR, ORN, ANDN, NXOR appr]?ach Telped
 Rich set of shift/rotate instructions >lghiticantly

e Large immediate values supported

up

Compatibility was not necessary

, Take away

* DPU have no OS, neither need one

* So many DPUs, no need to share one No compatibility requirement

e No OS, no legacy binary
¢ CLANG/LLVM tools are mature e CLANG/LLVM is the great
* Explicit memory hierarchy mandatory ikl
. o . * No need to ever share a DPU
* WOUId be an InCOmpatlblllty pOInt anyway e QGreat Security perspectives

e Security is on our roadmap

* No DPU sharing: dramatic security simplification
* No side channel ever, by definition

up

Light server orchestration of DPUs

* DPU control registers mapped in physical
memory space Take away

 Mapped in cacheable space

DDR4 not PIM friendly, but
* Orchestration done through a software library, still OK

solving/hiding DDR4 related complexities * Overhead dwarfed by
DPU local calculations

* Bus W'dt_h m'smaFCh e Complexity hidden in a
e Address interleaving programmer friendly
* Lack of cache coherency library

e Lack of hardware arbitration

e Experience shows orchestration overhead is in
the DPUs execution shadow up

The library feeds DPUs with correct data

Eight 64-bit “horizontal” words

are turned into 8 vertical words, DRAM chip
feeding 8 different DRAM chips have 8-bit
This way DPUs see full 64-bit data bus

words, not chunk of them

Word 0

Word 1 The transformation, a 8x8

Word 2 _ W W W W W W W| W matrix transposition, is
Library 6 6 0 0 o o o o donebythelibrary inside

Word 3 .
— | F | F|FFrrr a 64-byte cache line, thus

Word 4 d d d d/ d/d d d very efficiently.

Word 5 O 1 23 4 5 6 7

Word 6

Word 7 u p

Programming thousands of cores

L. C Take away
e Performance critical part of the application code e CRU 2ot
moved to DPUs orchestrator
* Libraries helping for most common cases provided * Application
: modifications limited
* Server processors (x86, ARM64, POWER 9) actingas i, rmost intensive
orchestrator calculations
» Still Executing the large majority of the application code * Algorithm
(since non-performance critical) mo‘i'j'f'gat'on :‘SV be
. . . . t ibit
* Dispatching calculation intensive tasks to the DPUs neeaee 1o =an
' higher % of local
e Collecting results from the DPUs calculations

* Need to tackle data locality and compute parallelism
» Largely experimented with labs and app owners U p

SDK at a glance

Software :I
Simulator o

Host Code FPGA LEE
H = E
-q
DPU Code
(/) DPU Toolchain E
DPU Binary
Run Time
System Lib

_

up

Samples ship Q3 2019,
PIM FPGA & SW simulators avallable

e Chip sampled Q2 2019
e Shipping from October

e SW simulator
 SDK, doc & demo
* Cloud9 graphical interface
 Manage from personal user account

* Or FPGA fast app simulator
 AWS f1.16x large instance
* 256 DPUs @200MHz

 Both simulators available on AWS
or on-premise

Copyright UPMEM® 2019

PIM, for real !
PoCs on verticals, samples, open sales start Q4 2019

* Production

Production start Samples Mass production
Q3 2018 Summer 2019 Q1 2020
e Go-to-Market |
Sales office
Bay area

Visit upmem.com

H2 2019 up

CTO & co-founder
fdevaux@upmem.com

= =— 2 Fabrice Devaux
Than Kyou! ool .

| Questions ?

cid
5 s
T

»
F.1
i g

Copyright UPMEM® 2019

	The true Processing In Memory accelerator�
	Key points
	Processing In Memory
	UPMEM PIM-DRAM big data accelerator
	Standard DRAM package & DIMM
	UPMEM PIM massive benefits
	Server with thousands of DPUs at work
	Multiple profiles for accelerated apps
	The Hurdles on the road to the Graal
	Building a logic flow on a DRAM process
	Building a fast processor using slow transistors
	Multithreading allows a long pipeline to remain efficient
	Heavy multi-threading implies explicit memory hierarchy
	PIM chip Block Diagram
	An ISA optimized for the implementation styles that are realistic on DRAM process
	A powerful ISA despite DRAM limitation
	Compatibility was not necessary
	Light server orchestration of DPUs
	The library feeds DPUs with correct data
	Programming thousands of cores
	SDK at a glance
	Samples ship Q3 2019,�PIM FPGA & SW simulators available
	PIM, for real !�PoCs on verticals, samples, open sales start Q4 2019
	Thank you!�Questions ?�

