up mem

UPMEM PIM DRAM

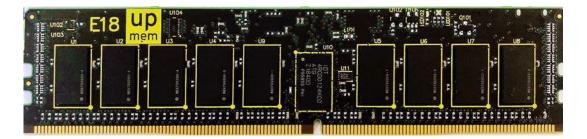
The true Processing In Memory accelerator

UPMEM PIM DRAM

Copyright UPMEM® 2019

(annonnannannan)

0


D

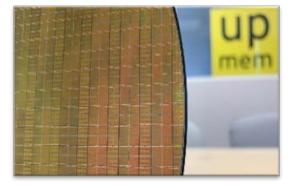
.....

0

Key points

HOT CHIPS 31

up


mem

Unprecedented scalable ultra-efficient PIM* architecture and chip

- 4 Gb DRAM memory chips, embedding 8 processors on die
- Delivered as standard DDR4 2400 DIMM modules with 16 chips
- Server CPU helped by **thousands** of additional cores
- Boosting **20x** data-intensive applications
- Power efficiency **10x** better
 - By reducing drastically CPU-DRAM data movement
- At marginal cost

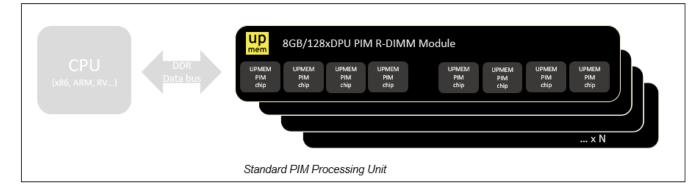
Processing In Memory

- Put processors INSIDE the main memory die
 - Tackling dominant energy cost of data movement
- First implementation to meet success conditions
 - Up-to-date unmodified DRAM process
 - Mainstream memory interface & language support
- PIM more relevant than ever
 - More data intensive applications
 - Memory wall & end of Moore's law
- Big data players
 - Computing efficiency now critical
 - Have scale & skills to adapt algorithms & SW

<u>Take away</u>

DRAM PIM tackles the dominant energy cost of data movement

PIM benefits more relevant than ever


- New workloads
- New players

UPMEM PIM-DRAM big data accelerator

- UPMEM DIMMs
 - Replacing standard DIMMs
 - DDR4 R-DIMM modules
 - 8GB+128DPUs (16 PIM chips)
- UPMEM PIM-DRAM chips
 - 4Gb DDR4 2400 DRAM + 8 DPUs @500MHz
 - Single die, standard 2x nm DRAM process
- Massive additional compute & bandwidth
 - 2TB/s DRAM-DPU BW for 128GB+2048 DPUs config
- Easily programmable SDK: C-programmable

Copyright UPMEM[®] 2019

PIM server: Typically with 128GB DRAM/2048 DPUs

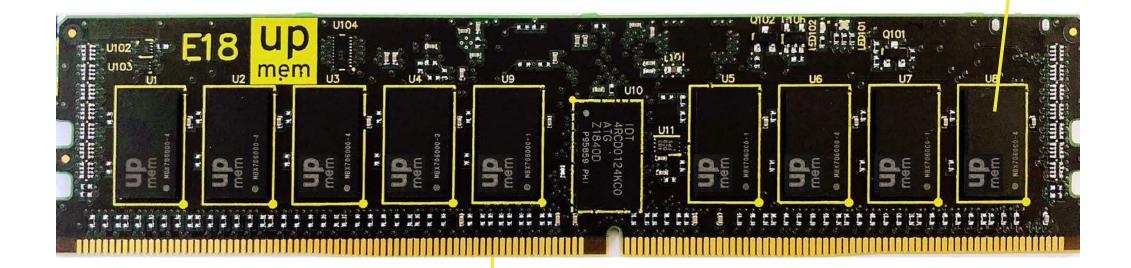
Take away

Scalable as compatible with

- Current servers
- Unmodified DRAM process
- Programmers ;)

HOT CHIPS 31

Samples & apps available



Standard DRAM package & DIMM

4Gb DRAM DDR4 2400 + 8DPUs @ 500MHz 1GB/s DRAM-DPU bandwidth Standard DRAM package ~1cm2 die – ~1,2W

HOT CHIPS 31

up

UPMEM PIM massive benefits

- Massive speed-up
 - Massive additional compute & bandwidth
- Massive energy gains
 - Most data movement on chip
- Low cost
 - ~300\$ of additional DRAM silicon
 - Affordable programming
- Massive ROI / TCO gains

Energy efficiency when computing on or off memory chip		Server + PIM DRAM	Server + normal DRAM
DRAM to processor 64-bit operand	рJ	~150	~3000*
Operation	рJ	~20	~10*
Server consumption	W	~700W	~300W
speed-up		~ x20	x1
energy gain		~ x10	x1
TCO gain		~ x10	x1

*Exascale Computing Trends: Adjusting to the "New Normal" for Computer Architecture; John Shalf, Computing in Science & engineering, 2013

Server with thousands of DPUs at work

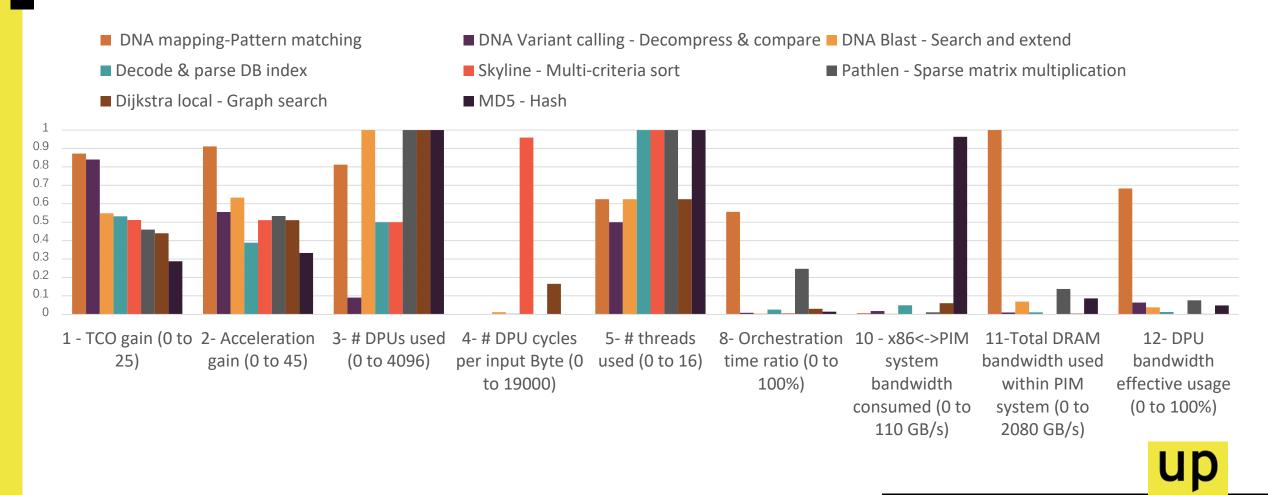
Field	Application	Benefits of PIM	Speed-up and TCO gain compared to same x86 server with standard DRAM	
Pattern matching	Genomics	Speed up comparison with reference data	<pre>x25 faster, evaluated by INRIA for DNA mapping* ** x41 for NextGenMap with TCO 26x lower</pre>	
		Speed up difference detections	x25 evaluated by UPMEM/INRIA for Illumina : DNA variant calling*, TCO 20 times better***	
		Full mapping + variance analysis	x22 evaluated by UPMEM/INRIA (34' vs 30h)****	
Index DB	Index Search	Speed up queries & latency	x18 speed-up - throughput, 1/100 th latency x14 TCO gain	
Analytics	Skyline multi- criteria analysis	More throughput efficient, easily scalable	14× higher throughput evaluated by UCR****10x better energy consumption	

* Compared on Intel server with/without PIM on DRAM: simulations (generally 2048 DPUs/128GBs)

** 5 times better than GPU ; https://hal.archives-ouvertes.fr/hal-01327511/document ; https://ieeexplore.ieee.org/document/7822732 ;

https://hal.archives-ouvertes.fr/hal-01294345/file/RR-BLAST_UPMEM_27_04_2016.pdf

*** Could vary with DPU pricing **** Better efficiency than most advanced FPGA implementations; 30h is GATK ***** better than GPU and much more scalable ; http://www.cs.ucr.edu/~najjar/papers/2018/a1-zois.pdf


Copyright UPMEM[®] 2019

HOT CHIPS 31

up

Multiple profiles for accelerated apps

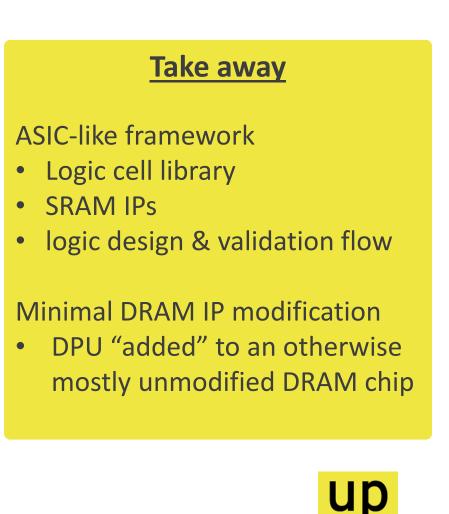
No need to saturate bandwidths (DRAM or orchestration) nor minimize calculation

The Hurdles on the road to the Graal

- DRAM process highly constrained
 - 3x slower transistors than same node digital process
 - Logic 10 times less dense vs. ASIC process
 - Routing density dramatically lower
 - 3 metals only for routing (vs. 10+), pitch x4 larger
- Strong design choices mandatory

But the PIM Graal is worth it !

HOT CHIPS 31


up

mem

Copyright UPMEM® 2019

Building a logic flow on a DRAM process

- Digital library & implementation flow created
- 4 different SRAM cuts created
 - 320 bits to 16 KB
 - Single port and dual ports
- DRAM IP
 - Modification to be minimized
 - The asynchronous interface increases the logic complexity

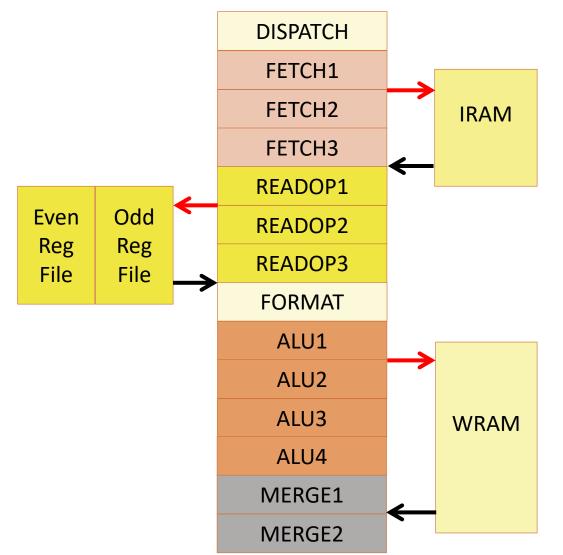
HOT CHIPS 31

Building a fast processor using slow transistors

- 14 pipe stages needed to reach 500 MHz
- Interleaved pipeline
 - No operand bypass, no stall signals
- 24 hardware threads
 - 100 % performance achieved when 11 threads or more are running

Take away

DPU


- 1 instruction / cycle on multi-threaded code
- 1 GB/s from DRAM
 - 8B to 2KB transfer

Equivalent to 1/6th of Xeon core on PIM applications (branchy, integer only code)

PIM server = 2048 DPUs

HOT CHIPS 31

up

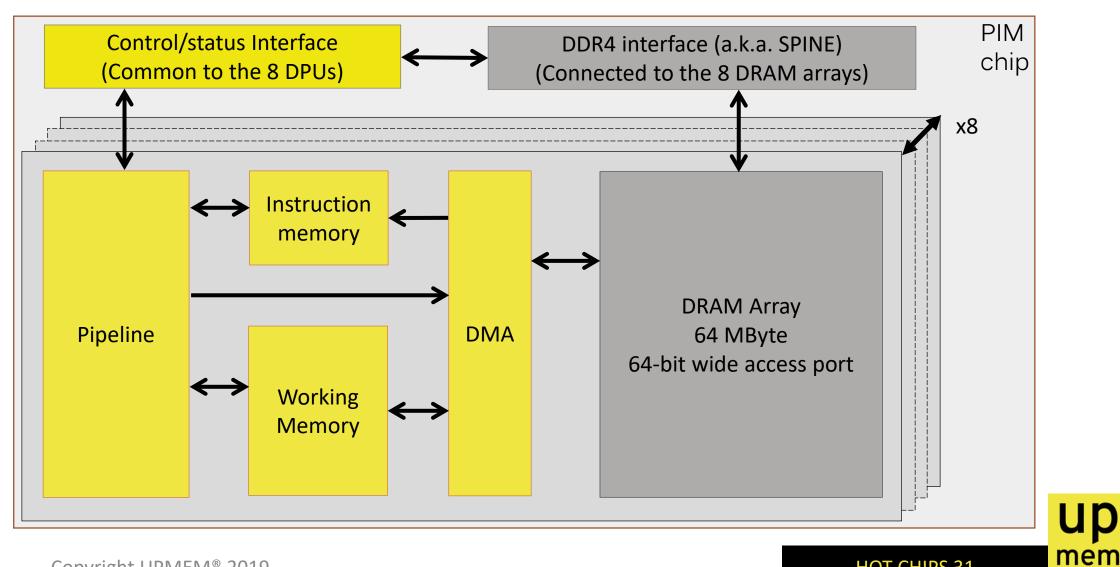
Multithreading allows a long pipeline to remain efficient

- Address & write data
 Read data
- DISPATCH Thread selection
- FETCH1/2/3 Instruction fetch
- READOP1/2/3 register file access
- FORMAT operand formating
- ALU1/2/3/4 Operators & WRAM access
- MERGE1/2. result formating

up

Heavy multi-threading implies explicit memory hierarchy

- No data cache, 64 KB SRAM (WRAM) instead
 - Too much threading for caches
- No instruction cache, 24 KB SRAM (IRAM) instead
- DMA instructions move data between DRAM and WRAM/IRAM
 - Executed by an autonomous DMA engine, no/little effect on pipeline performance

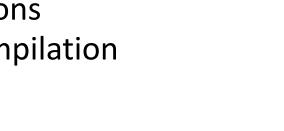

Take away

Tightly coupled memories instead of caches:

- Too many threads for cache
- With efficient DMA instructions

PIM chip Block Diagram

Copyright UPMEM[®] 2019


An ISA optimized for the implementation styles that are realistic on DRAM process

Specific 32-bit ISA

- Aiming only scalar/in order/multithread implementation
- Providing efficient thread context
- Clean target of LLVM/CLANG
 - Regular triadic ISA

Copyright UPMEM[®] 2019

- Allowing out of the box compilation of 64-bit C code
 - Some 64-bit instructions
 - Helpers for 64-bit compilation

Optimized ISA according to context

 Multithreaded, scalar, in order

Publicly documented ISA

HOT CHIPS 31

up

A powerful ISA despite DRAM limitation

Beside supporting only 8x8 single cycle multiplies, DPU ISA more powerful than other 32-bit ISA.

- O cycle conditional jump on result properties
 - With rich set of jump conditions
- SHIFT+ADD/SUB instructions
- Rich set of logic instructions
 - Including NAND, NOR, ORN, ANDN, NXOR
- Rich set of shift/rotate instructions
- Large immediate values supported

Take away

ISA provides performance despite DRAM process

Clean sheet ISA approach helped significantly

HOT CHIPS 31

up

Compatibility was not necessary

- DPU have no OS, neither need one
 - So many DPUs, no need to share one
- CLANG/LLVM tools are mature
- Explicit memory hierarchy mandatory
 - Would be an incompatibility point anyway
- Security is on our roadmap
 - No DPU sharing: dramatic security simplification
 - No side channel ever, by definition

Take away

No compatibility requirement

- No OS, no legacy binary
- CLANG/LLVM is the great enabler
- No need to ever share a DPU
 - Great security perspectives

Light server orchestration of DPUs

- DPU control registers mapped in physical memory space
 - Mapped in cacheable space
- Orchestration done through a software library, solving/hiding DDR4 related complexities
 - Bus width mismatch
 - Address interleaving
 - Lack of cache coherency
 - Lack of hardware arbitration
- Experience shows orchestration overhead is in the DPUs execution shadow

Copyright UPMEM[®] 2019

Take away

DDR4 not PIM friendly, but still OK

- Overhead dwarfed by DPU local calculations
- Complexity hidden in a programmer friendly library

HOT CHIPS 31

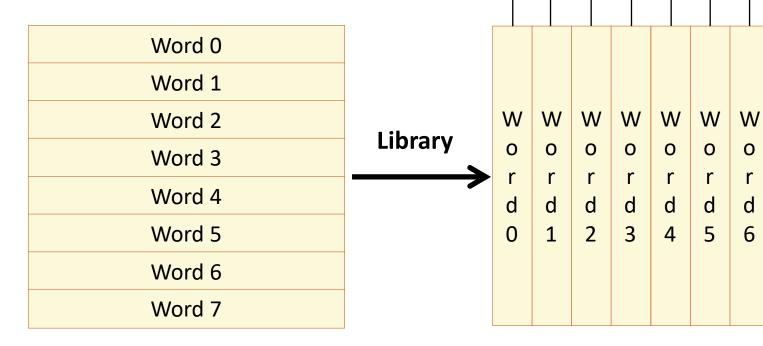
up

The library feeds DPUs with correct data

Λ

Λ

W


0

d

7

Eight 64-bit "horizontal" words are turned into 8 vertical words, feeding 8 different DRAM chips

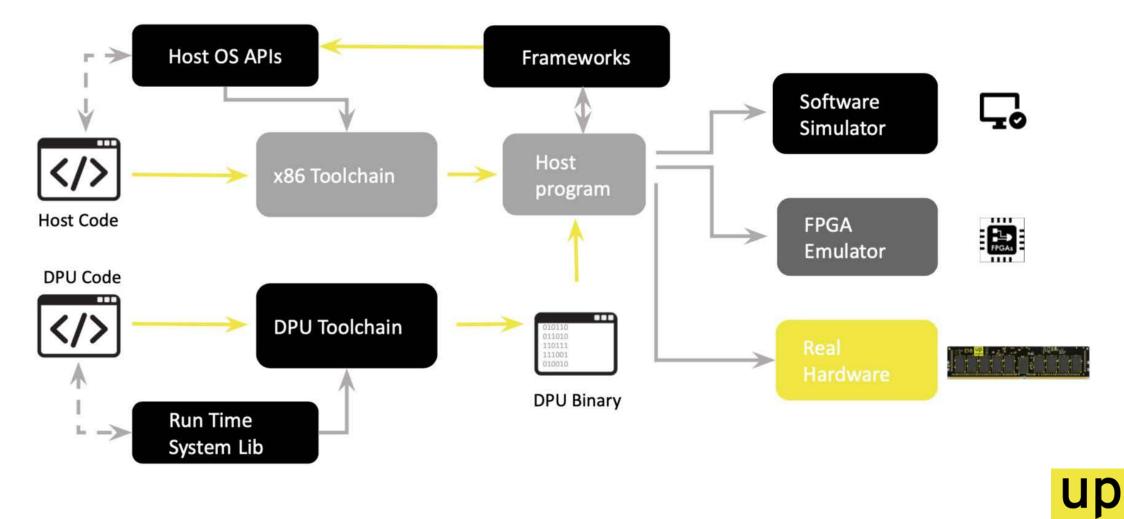
This way DPUs see full 64-bit words, not chunk of them

The transformation, a 8x8 matrix transposition, is done by the library inside a 64-byte cache line, thus very efficiently.

up

Programming thousands of cores

- Performance critical part of the application code moved to DPUs
 - Libraries helping for most common cases provided
- Server processors (x86, ARM64, POWER 9) acting as orchestrator
 - Still Executing the large majority of the application code (since non-performance critical)
 - Dispatching calculation intensive tasks to the DPUs
 - Collecting results from the DPUs
- Need to tackle data locality and compute parallelism
 - Largely experimented with labs and app owners Copyright UPMEM® 2019


Take away

Server CPU act as orchestrator

- Application modifications limited to most intensive calculations
- Algorithm modification may be needed to exhibit higher % of local calculations

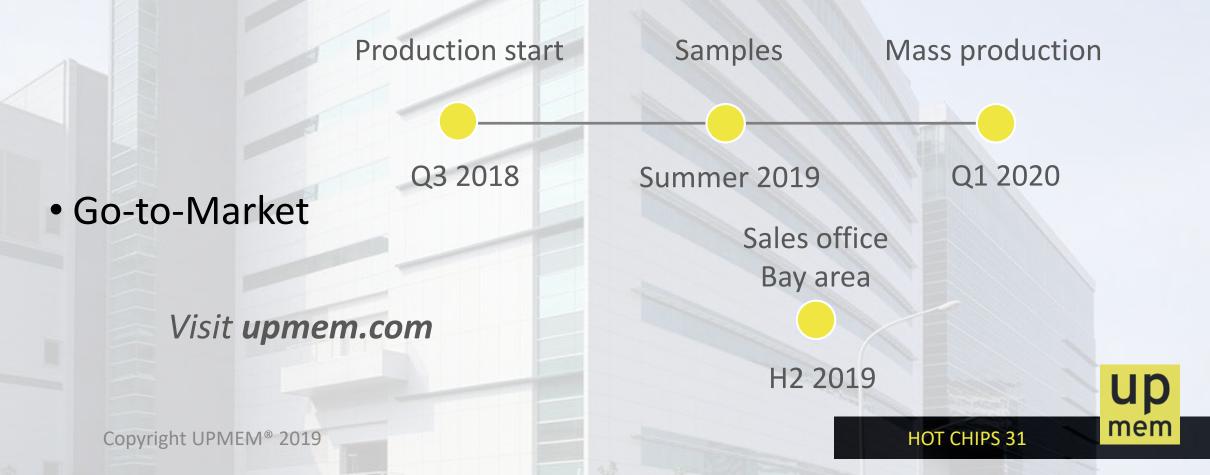
SDK at a glance

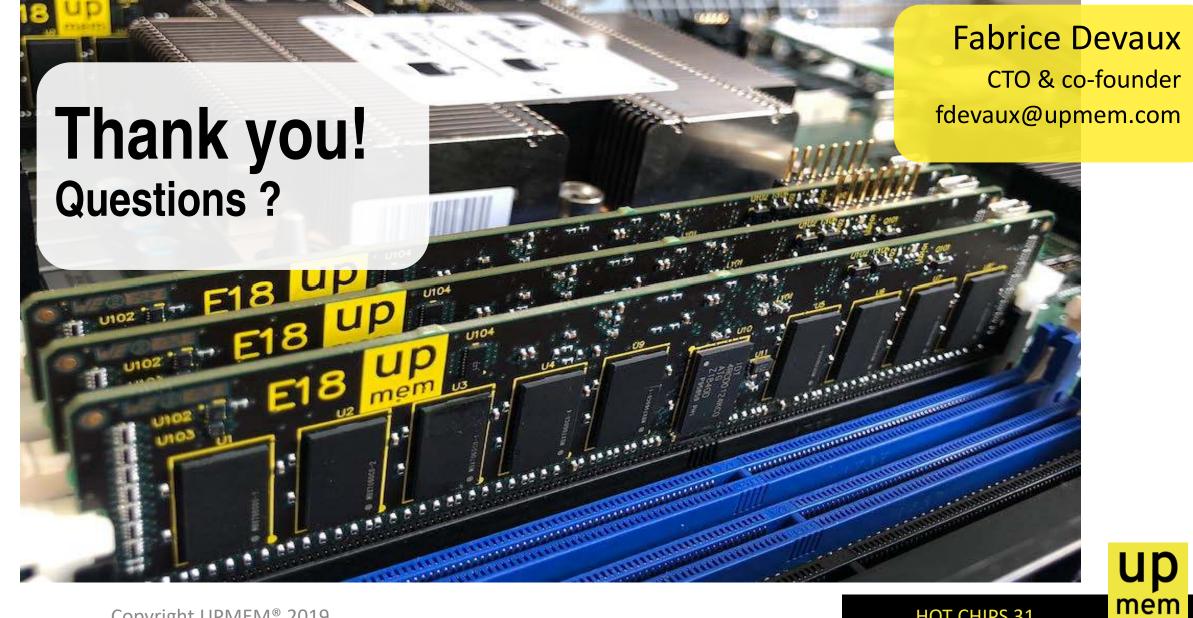
Copyright UPMEM[®] 2019

HOT CHIPS 31

Samples ship Q3 2019, PIM FPGA & SW simulators available

- Chip sampled Q2 2019
 - Shipping from October
- SW simulator
 - SDK, doc & demo
 - Cloud9 graphical interface
 - Manage from personal user account
- Or FPGA fast app simulator
 - AWS f1.16x large instance
 - 256 DPUs @200MHz
- Both simulators available on AWS or on-premise




HOT CHIPS 31

up

PIM, for real ! PoCs on verticals, samples, open sales start Q4 2019

Production

Copyright UPMEM® 2019