

IBM's Next Generation POWER Processor

Hot Chips August 18-20, 2019

Jeff Stuecheli Scott Willenborg William Starke

Power Systems Proposed POWER Processor Technology and I/O Roadmap

Focus of 2018 talk

	POWER7 Architecture		POWER8 Architecture		POWER9 Architecture			POWER10
	2010 POWER7 8 cores 45nm New Micro- Architecture	2012 POWER7+ 8 cores 32nm Enhanced Micro- Architecture New Process Technology	2014 POWER8 12 cores 22nm New Micro- Architecture	2016 POWER8 w/ NVLink 12 cores 22nm Enhanced Micro- Architecture With NVLink	2017 P9 SO 12/24 cores 14nm New Micro- Architecture Direct attach memory New Process	2018 P9 SU 12/24 cores 14nm Enhanced Micro- Architecture Buffered Memory	2020 P9 AIO 12/24 cores 14nm Enhanced Micro- Architecture New Memory Subsystem	2021 P10 TBA cores New Micro- Architecture
Sustained Memory Bandwidth	Up To 65 GB/s	Up To 65 GB/s	Up To 210 GB/s	Up To 210 GB/s	Technology Up To 150 GB/s	Up To 210 GB/s	Up To 650 GB/s	Up To 800 GB/s
Standard I/O Interconnect	PCle Gen2	PCle Gen2	PCle Gen3	PCle Gen3	PCle Gen4 x48	PCle Gen4 x48	PCIe Gen4 x48	PCle Gen5
Advanced I/O Signaling	N/A	N/A	N/A	20 GT/s 160GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	32 & 50 GT/s
Advanced I/O Architecture	N/A	N/A	CAPI 1.0	CAPI 1.0 , NVLink	CAPI 2.0, OpenCAPI3.0, NVLink	CAPI 2.0, OpenCAPI3.0, NVLink	CAPI 2.0, OpenCAPI4.0, NVLink	ТВА

Statement of Direction, Subject to Change

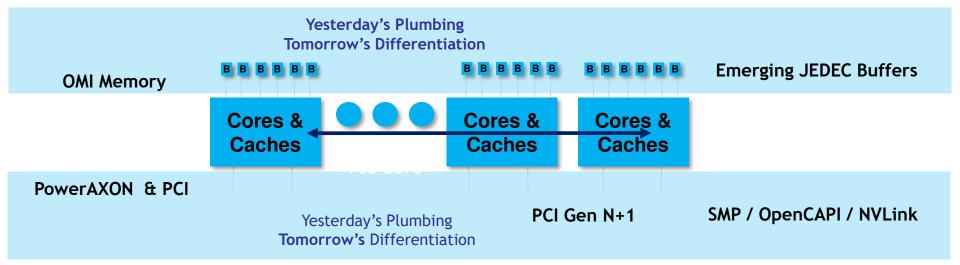
Power Systems Proposed POWER Processor Technology and I/O Roadmap

Focus of today's talk

	POWER7 Architecture		POWER8 Architecture		POWER9 Architecture			POWER10
	2010 POWER7 ^{8 cores} 45nm	2012 POWER7+ ^{8 cores} 32nm	2014 POWER8 ^{12 cores} 22nm	2016 POWER8 w/ NVLink 12 cores 22nm	2017 P9 SO 12/24 cores 14nm	2018 P9 SU ^{12/24} cores 14nm	2020 P9 AIO ^{12/24} cores 14nm	2021 P10 TBA cores
	New Micro- Architecture	Enhanced Micro- Architecture	New Micro- Architecture	Enhanced Micro- Architecture With NVLink	New Micro- Architecture Direct attach memory	Enhanced Micro- Architecture Buffered Memory	Enhanced Micro- Architecture New Memory Subsystem	New Micro- Architecture New Process
	Technology	chnology Technology	Technology		New Process Technology		Subsystem	Technology
Sustained Memory Bandwidth	Up To 65 GB/s	Up To 65 GB/s	Up To 210 GB/s	Up To 210 GB/s	Up To 150 GB/s	Up To 210 GB/s	Up To 650 GB/s	Up To 800 GB/s
Standard I/O Interconnect	PCle Gen2	PCle Gen2	PCle Gen3	PCle Gen3	PCIe Gen4 x48	PCle Gen4 x48	PCle Gen4 x48	PCIe Gen5
Advanced I/O Signaling	N/A	N/A	N/A	20 GT/s 160GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	32 & 50 GT/s
Advanced I/O Architecture	N/A	N/A	CAPI 1.0	CAPI 1.0 , NVLink	CAPI 2.0, OpenCAPI3.0, NVLink	CAPI 2.0, OpenCAPI3.0, NVLink	CAPI 2.0, OpenCAPI4.0, NVLink	ТВА

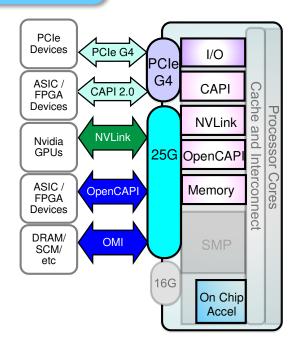
Statement of Direction, Subject to Change

Power Systems Proposed POWER Processor Technology and I/O Roadmap



Looking forward POWER10 **POWER7** Architecture **POWER8** Architecture **POWER9** Architecture 2018 2020 2012 2014 2016 2017 2021 2010 **P9 SU** POWER8 POWER8 **P9 SO** P9 AIO **P10** POWER7 POWER7+ w/ NVLink 12/24 cores 12/24 cores 12/24 cores **TBA cores** 12 cores 8 cores 8 cores 22nm 12 cores 14nm 14nm 14nm 45nm 32nm 22nm Enhanced New Micro-New Micro-Enhanced New Micro-Enhanced Enhanced New Micro-Micro-Micro-Architecture Micro-Architecture Architecture Micro-Architecture Architecture Architecture Architecture Architecture With NVLink Direct attach New Buffered memory Memory New Process **New Process** New Process Memory New Process Subsystem Technology New Process Technology Technology Technology Technology Up To 800 GB/s Sustained Memory Bandwidth 65 GB/s 65 GB/s 210 GB/s 150 GB/s 210 GB/s 650 GB/s 210 GB/s Standard I/O Interconnect PCIe Gen4 x48 PCIe Gen4 x48 PCle Gen5 PCIe Gen2 PCle Gen2 PCIe Gen3 PCle Gen3 PCIe Gen4 x48 20 GT/s 25 GT/s 25 GT/s 25 GT/s 32 & 50 GT/s Advanced I/O Signaling N/A N/A N/A 160GB/s 300GB/s 300GB/s 300GB/s CAPI 2.0, CAPI 2.0, CAPI 2.0, CAPI 1.0, OpenCAPI3.0, OpenCAPI3.0. OpenCAPI4.0, TBA Advanced I/O Architecture **CAPI 1.0** N/A N/A NVLink NVLink NVLink NVLink

Statement of Direction, Subject to Change



Power Systems

- Extreme Processor / Accelerator Bandwidth and Reduced Latency
- Coherent Memory and Virtual Addressing Capability for all Accelerators
- OpenPOWER Community Enablement Robust Accelerated Compute Options
- State of the Art I/O and Acceleration Attachment Signaling
 - PCle Gen 4 x 48 lanes 192 GB/s duplex bandwidth
 - 25 G Common Link x 96 lanes 600 GB/s duplex bandwidth
- Robust Accelerated Compute Options with OPEN standards
 - On-Chip Acceleration Gzip x1, 842 Compression x2, AES/SHA x2
 - CAPI 2.0 4x bandwidth of POWER8 using PCIe Gen 4
 - **NVLink** Next generation of GPU/CPU bandwidth
 - **OpenCAPI** High bandwidth, low latency and open interface
 - **OMI** High bandwidth and/or differentiated for acceleration

POWER9

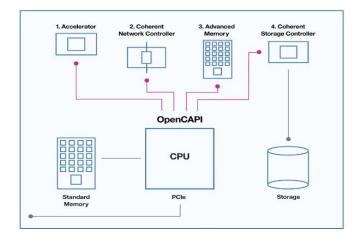
PowerAccel

6

IBM

THE WORLD'S TWO MOST POWERFUL SUPERCOMPUTERS

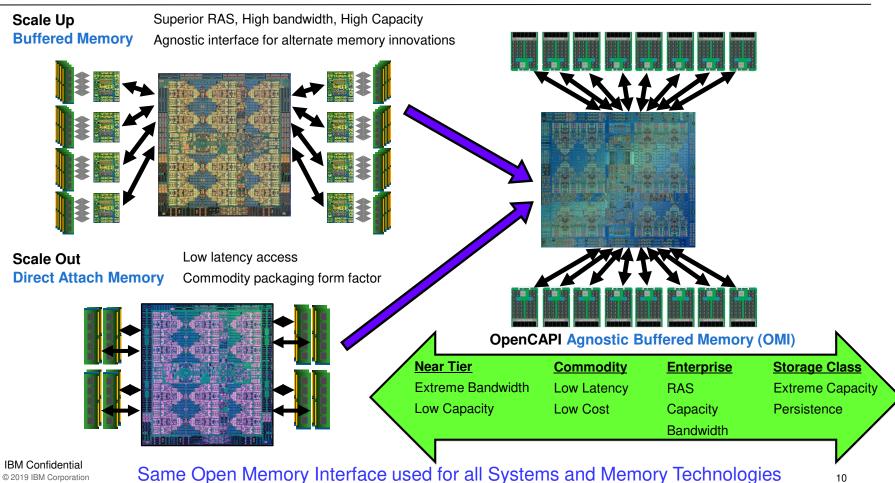
BUILT FOR THE AI ERA WITH OPEN COLLABORATION





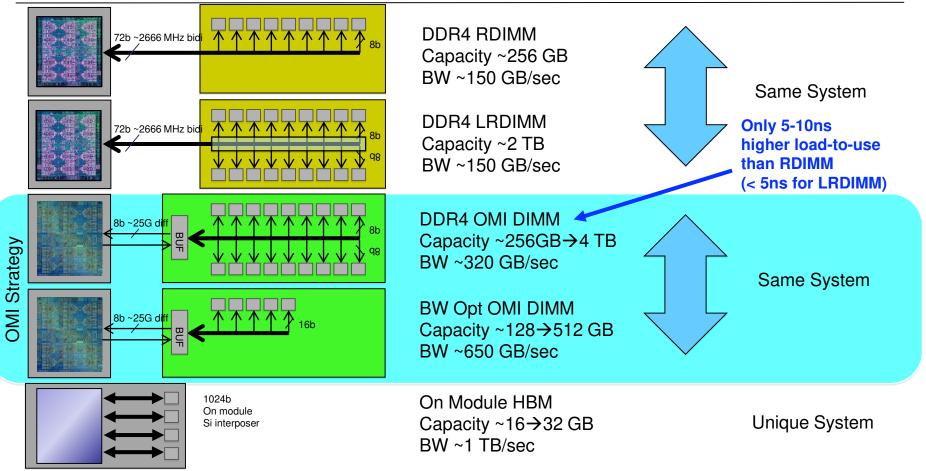
- Designed to support range of devices
 - Coherent Caching Accelerators
 - Network Controllers
 - Differentiated Memory
 - o High Bandwidth
 - \circ Low Latency
 - o Storage Class Memory
 - Storage Controllers

- · Asymmetric design, endpoint optimized for host and device attach
 - **ISA of Host Architecture**: Need to hide difference in Coherence, Memory Model, Address Translation, etc.
 - **Design schedule:** The design schedule of a high performance CPU host is typically on the order of multiple years, conversely, accelerator devices have much shorter development cycles, typically less than a year.
 - **Timing Corner:** ASIC and FPGA technologies run at lower frequencies and timing optimization as CPUs.
 - Plurality of devices: Effort in the host, both IP and circuit resource, have a multiplicative effect.
 - **Trust:** Attached devices are susceptible to both intentional and unintentional trust violations
 - Cache coherence: Hosts have high variability in protocol. Host cannot trust attached device to obey rules.


- Low Latency and High Bandwidth
 - Fixed width DL CRC
 - Aligned TL
 - Aligned Data
 - Separately pipelined control/tag vs data
 - \circ $\,$ Compromise in switching capability $\,$

Bytes(63:0)						
DL content	TL command / response content					
	Data flit 0					
	Data flit 1					
	Data flit 2					
	Data flit 3					
	Data flit 4					
Data flit 5						
	Data flit 6					
	Data flit 7					
DL content	TL command / response content					
	Data flit 0					
	Data flit 1					
DL content	TL command / response content					
DL content	TL command / response content					

POWER9 Family Memory Architecture

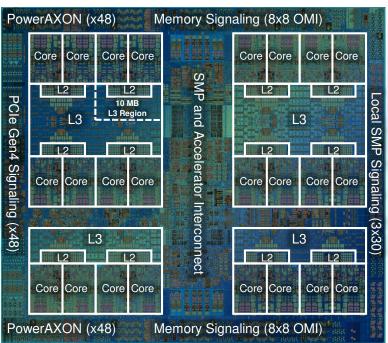


Primary Tier Memory Options

© 2019 IBM Corporation

Processor Chip Details

- 728 mm² (25.3 x 28.8 mm)
- 8 Billion Transistors
- Up to 24 SMT4 Cores
- Up to 120 MB eDRAM L3 cache


Semiconductor Technology

- 14nm finFET
- Improved device performance
- Reduced energy
- eDRAM
- 17 layer metal stack

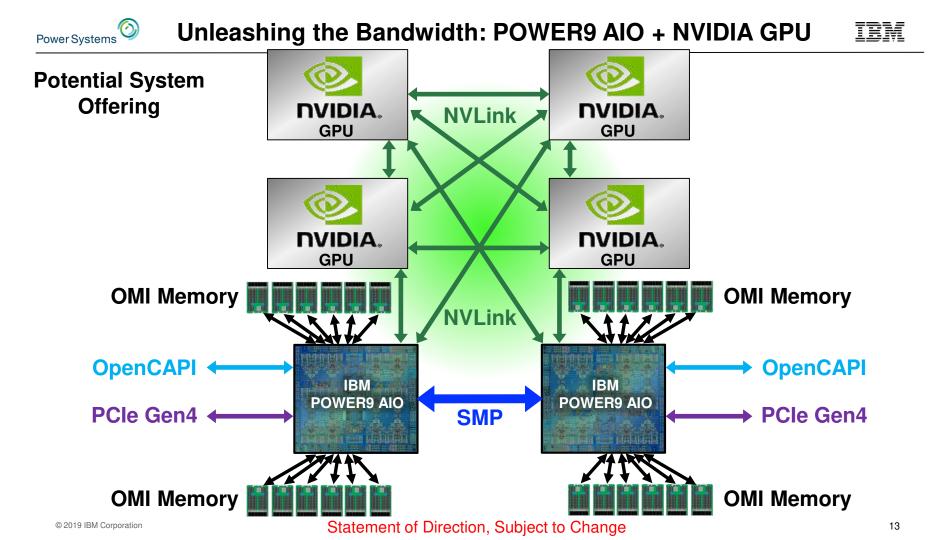
High Bandwidth Signaling

- 25 GT/s low energy differential
 - PowerAXON, OMI memory
- 16 GT/s low energy differential
 - Local SMP
- 16 GT/s PCIe Gen4

The Bandwidth Beast Advanced I/O (AIO)

2 TB/s Raw Signaling Bandwidth Shared by 6 Attach Protocols

Open Memory Interface (OMI)

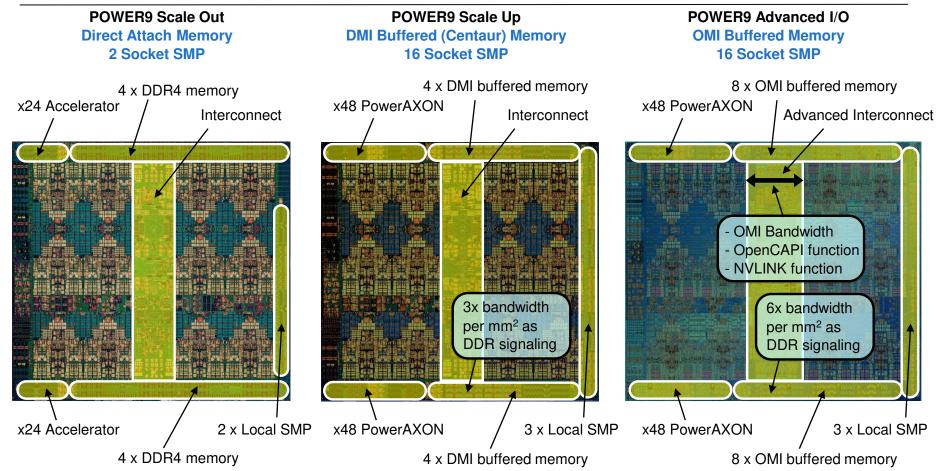

- 16 channels x8 at 25 GT/s
- 650 GB/s peak 1:1 r/w bandwidth
- Technology Agnostic
- Offered w/ Microchip DDR4 buffer (410 GB/s peak bandwidth)

PowerAXON 25 GT/s Attach

- Up to 16 socket glue-less SMP (4x24 SMP added to 3x30 local)
- Up to x48 NVIDIA NVLINK GPU attach
- Up to x48 OpenCAPI 4.0 coherent accelerator / memory attach

Industry Standard I/O Attach

- x48 PCIe Gen 4 at 16 GT/s
- Up to x16 CAPI 2.0 coherent accelerator / storage attach


Roadmap of Capabilities and Host Silicon Delivery

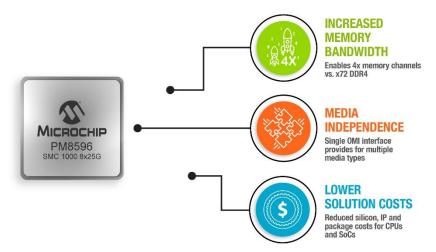
Accelerator Protocol	CAPI 1.0	CAPI 2.0	OpenCAPI 3.0	OpenCAPI 4.0	OpenCAPI 5.0	
First Host Silicon	POWER8 (GA 2014)	POWER9 SO (GA 2017)	POWER9 SO (GA 2017)	POWER9 AIO (GA 2020)	POWER10 (GA 2021)	
Functional Partitioning	Asymmetric	Asymmetric	Asymmetric	Asymmetric	Asymmetric	
Host Architecture	POWER	POWER	Any	Any	Any	
Cache Line Size Supported	128B	128B	64/128/256B	64/128/256B	64/128/256B	
Attach Vehicle	PCle Gen 3 Tunneled	PCIe Gen 4 Tunneled	25 G (open) Native DL/TL	25 G (open) Native DL/TL	32/50 G (open) Native DL/TL	
Address Translation	On Accelerator	Host	Host (secure)	Host (secure)	Host (secure)	
Native DMA to Host Mem	No	Yes	Yes	Yes	Yes	
Atomics to Host Mem	No	Yes	Yes	Yes	Yes	
Host Thread Wake-up	No	Yes	Yes	Yes	Yes	
Host Memory Attach Agent	No	No	Yes	Yes	Yes	
Low Latency Short Msg	4B/8B MMIO	4B/8B MMIO	4B/8B MMIO	128B push	128B push	
Posted Writes to Host Mem	No	No	No	Yes	Yes	
Caching of Host Mem	RA Cache	RA Cache	No	VA Cache	VA Cache	

POWER9 Connectivity Variants

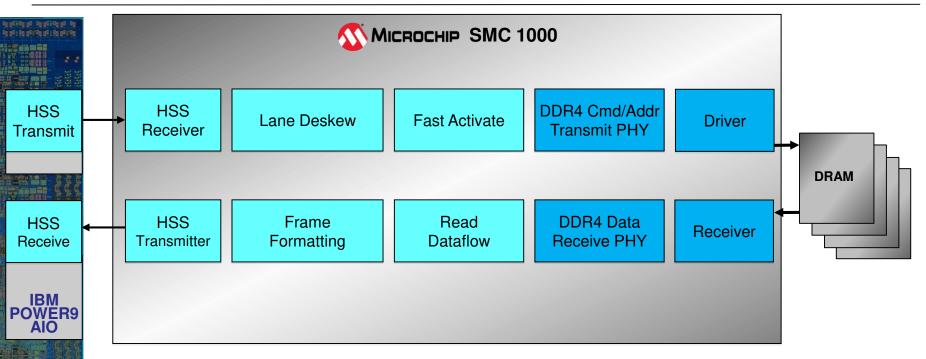

IBM Centaur DIMM

OMI DDIMM

- Technology agnostic
- Low cost
- Ultra-scale system density
- Enterprise reliability
- Low-latency
- · High bandwidth



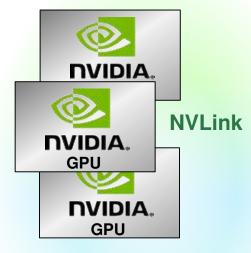
- Signaling: 25.6GHz vs DDR4 @ 3200 MHz
 - 4x raw bandwidth per I/O signal
 - 1.3x mixed traffic utilization
- Idle load-to-use latency over traditional DDR:
 - POWER8/9 Centaur design ~10 ns
 - OMI target of ~5-10 ns (RDIMM)
 - OMI target of < 5ns (LRDIMM)
- IBM Centaur: One proprietary DMI design
- Microchip SMC 1000:
 - Open (OMI) design
 - Emerging JEDEC Standard

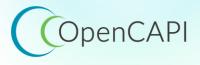

8x25G Open Memory Interface (OMI) Serial DDR4 Smart Memory Controller

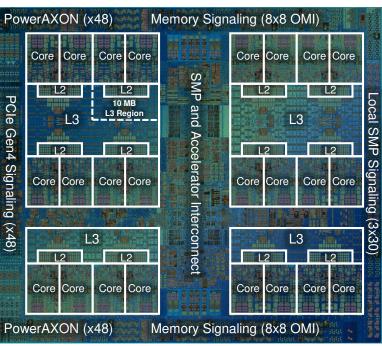
OMI Memory Latency

Microchip's SMC 1000 8x25G features an innovative low latency design that delivers less than four ns incremental latency over a traditional integrated DDR controller with LRDIMM. This results in OMI-based DDIMM products having virtually identical bandwidth and latency performance to comparable LRDIMM products.

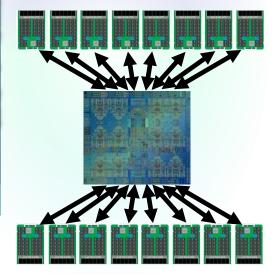
6X bandwidth / PHY area advantage gives POWER9 AIO bandwidth of 16 DDR ports


© 2019 IBM Corporation




PowerAXON

The Bandwidth Beast POWER9 with Advanced I/O (AIO)



Thank You!

OMI Memory

