

TEN 2"

David Suggs Dan Bouvier

Michael Clark, Kevin Lepak, Mahesh Subramony

THE PATH TO "ZEN 2"

CHALLENGES

- Meet multiple markets server to mobile
- Ultimate performance
- Energy efficient performance

TECHNOLOGY

- Enable scale and power
- Balancing complexity of new technology node with time-to-market

PLATFORM

- Chiplets to deliver right technology to the needs
- Upgrade IO to meet system demands
- Compatibility

"ZEN 2"

MICROARCHITECTURAL HIGHLIGHTS

- New TAGE branch predictor
- 2x op cache capacity
- Reoptimized L1I cache
- 3rd address generation unit
- 2x FP data path width
- 3x L1 load+store bandwidth
- 2x L3 capacity
- Improved prefetch throttling
- 2 threads per core (SMT) carried forward

15% IPC IMPROVEMENT FROM "ZEN" TO "ZEN 2"

MAJOR EFFICIENCY IMPROVEMENTS

INSTRUCTIONS PER UNIT OF ENERGY

1.15x IPC

1.17x Design

1.47x 7nm Technology

- Improved branch prediction accuracy
- Higher op cache hit rate
- New integer scheduler algorithms
- Clock and data gating improvements
- Low-power design methodology

DESIGNED FOR SECURITY

HARDWA	RE O	PTIN	IIZED
SECURITY	MIT	IGAT	IONS

SECURE MICROARCHITECTURE

SECURE VIRTUALIZATION

Spectre v2*

Indirect branch target injection

Hardware permission checks

SEV-ES SEV with encrypted state

Spectre v4**

Speculative store bypass

Permissions are checked prior to consuming data

More SEV Keys

SEV with up to 509 encrypted

guests (was 15)

SEV-VTE

SEV with virtual transparent

encryption

GMET

Guest mode execute trap.

Hypervisor can trap guest supervisor-mode execution of pages for integrity checking

EXTENDING THE ARCHITECTURE

FEATURE	NOTES	"ZEN"	"ZEN 2"
x2APIC	APIC extension for high core count system support		
QOS	Quality-of-service monitoring/enforcement of L3 cache occupancy and memory bandwidth		
UMIP	User mode instruction prevention (CR4.UMIP controls access to SGDT, SIDT, SLDT, STR, and SMSW)		
CLWB	Non-volatile memory enhancement (cache-line writeback)		
WBNOINVD	Cleans caches, but does not invalidate		
RDPRU	Read processor register at a user level (currently MPERF and APERF)		

PREDICTION, FETCH, AND DECODE

GREATER ACCURACY AND HIGHER CAPACITY

"ZEN"	"ZEN 2"

IMPROVED BRANCH PREDICTION		
L2 Predictor	Perceptron	TAGE
2x LO BTB	8	16
2x L1 BTB	256	512
1.75x L2 BTB	4K	7K
2X Indirect Target Array	0.5K	1K
30% Lower Mispredict Rate Target		
OPTIMIZED L1I CACHE	64K	32K
2x Associativity	4-way	8-way
Improved Utilization		
2X OP CACHE (FUSED INSTR)	2K	4K
Better Instruction Fusion		
Better Effective Throughput		

INTEGER EXECUTE

WIDER ISSUE AND DEEPER WINDOW

	"ZEN"	"ZEN 2"
WIDER ISSUE	6	7
ALUs	4	4
AGUs	2	3
DEEPER WINDOW		
Bigger ALU Scheduler	4x14	4x16
More Unified AGU Scheduler	2x14	1x28
Bigger Register File	168	180
Bigger Reorder Buffer	192	224
IMPROVED SMT FAIRNESS FOR		
ALU AND AGU SCHEDULERS		

FLOATING-POINT/VECTOR EXECUTE

DOUBLE WIDE VECTORS

	"ZEN"	"ZEN 2"
AVX256 INSTRUCTION SUPPORT		
2X WIDTH DATA PATH EDC Management	128b	256b
2X WIDTH VECTOR REGISTER FILE	128b	256b
2X WIDTH LOADS (2)	128b	256b
2X WIDTH STORES (1)	128b	256b
IMPROVED DOUBLE-PRECISION MULTIPLY LATENCY	4 cyc	3 cyc

LOAD/STORE AND L1D CACHE

MORE THROUGHPUT AND BIGGER STRUCTURES

	"ZEN"	"ZEN 2"
BIGGER STORE QUEUE	44	48
BIGGER, BETTER L2 DTLB	1.5K	2K
1G Page Support (as 2M)		
Lower Latency	8 cyc	7 cyc
32KB, 8-WAY L1D CACHE		
2X Width Reads (2)	128b	256b
2X Width Writes (1)	128b	256b
3X Load + Store Bandwidth	32B/clk	96B/clk
IMPROVED WRITE-COMBINING		
BUFFER PERFORMANCE		
IMPROVED PREFETCH THROTTLING		

"ZEN 2" SOLUTIONS

3rd Generation Ryzen™ ("Matisse") 2nd Generation Epyc™ ("Rome")

CACHE HIERARCHY AND CPU COMPLEX

- 2X L1D CACHE LOAD/STORE BANDWIDTH vs. "ZEN"
 - 32B Per Cycle Everywhere
- 2X L3 CACHE UP TO 16MB PER CCX, 2CCXs per CCD

CCX
(4C8T, 16MB L3)

INFINITY FABRIC PHY
(DIE-TO-DIE)

CCX
(4C8T, 16MB L3)

AMD GOAL

DEPLOY LEADERSHIP PERFORMANCE SIMULTANEOUSLY INTO MULTIPLE MARKETS

CHALLENGES

- Higher cost per mm²
- Complex analog/IO elements do not scale well and Can be challenging to port
- Wide range of diverse markets

SOLUTION | CHIPLET STRATEGY

- Small die improve yield
- Analog / IO IP in 12nm technology to reduce cost and complexity
- Enables product configurability

Next Generation Highly Optimized "Zen 2" Core

Leading Edge 7nm Technology for Density and Power Efficiency

Timely Delivery
Of Products

REVOLUTIONARY CHIPLET DESIGN

Each IP in its Optimal Technology Infinity Fabric™ Enables Modularity (MCM), Scaling (CCD Count)

Optimized I/O Die Enables Common Latency to All Cores/Caches

PUTTING IT TOGETHER PERFORMANCE DESKTOP "MATISSE"

"MATISSE" CPU

- A Desktop SoC and a Chipset
 - IOD combined with CCD(s) form the CPU
 - Standalone IOD re-purposed as Chipset
- Leading I/O
 - 48GB/s native PCle™ BW
 - 4 USB 3.1 10Gb/s ports
- Memory BW
 - 51.2 GB/s Memory BW
 - Dual Channel DDR4 3200 MT/s
- Overclocking
 - Improved Memory overclocking (Phy, Package)
 - De-coupled various IO-die clocks for flexibility
- AM4 Platform Longevity
 - Compatible with AM4 platform

SIGNIFICANT DESKTOP PERFORMANCE IMPROVEMENT

Application Performance In Power Efficient TDP

- Compute heavy workloads benefit from power efficient design
- Content Creation, Rendering benchmarks see large gains
- Additional cores in 3900X deliver substantial compute power

SIGNIFICANT DESKTOP PERFORMANCE IMPROVEMENT

Gaming Performance

- Significant generational performance improvement
- Increased L3 (up to 64MB)
 reduces effective memory latency

APPLICATION BENEFITS FROM PCIE™ GEN4

10 Performance

Up to 2x PCle BW vs prior Ryzen generation

Storage Performance

 Large Block Sequential accesses are severely limited by link speeds

3DMark® PCle Feature Test

Vertex animation (game VFX) is sensitive to bus bandwidth, allowing significant upside

DaVinci Resolve

 Bus bandwidth is a significant limiting factor for non-linear editing (NLE) performance

■ AMD Ryzen ™ 7 3800X Radeon ™ RX 5700 XT (PCIe ® Gen3)

■ AMD Ryzen ™ 7 3800X Radeon ™ RX 5700 XT (PCIe ® Gen4)

PUTTING IT TOGETHER

SERVER "ROME"

"Rome" CPU

- ~1000mm² cumulative area in leading-edge 7nm/12nm design
- Up-to-64 cores (8 CCDs) and 256MB L3-cache
- Improved NUMA
 - All memory and I/O hosted by single die
 - Single IOD results in effective latency improvements
- Class-Leading I/O and Memory Bandwidth
 - 8 Memory Channels 64b DDR4-3200 204.8 GB/s
 Bandwidth
 - PCle™ Gen 4
- Platform Longevity; Compatible with Prior Generation
 EPYC™
- Advanced Platform Security Features: Expanded SEV keys, SEV-IO, SEV-ES

TWO SOCKET LEADERSHIP

2S INTEL® XEON® VS. 2S AMD EPYC™ SPEC CPU® 2017 PERFORMANCE

Up to 128 cores (8 CCDs) and
 256MB L3-cache per socket

*Estimated; see endnotes

Specrate®2017_int_peak

"ROME" LEADERSHIP PERFORMANCE

WITH REAL WORLD RESULTS

ENGINEERING SIMULATIONS

UP TO 58%
HIGHER PERFORMANCE

STRUCTURAL ANALYSIS

△ Altair

UP TO 72%
HIGHER PERFORMANCE

FINITE ELEMENT
ANALYSIS

UP TO 79%
HIGHER PERFORMANCE

MANUFACTURING

SIEMENS

UP TO 95%
HIGHER PERFORMANCE

FLUID DYNAMICS

NNSYS®

UP TO 95%
HIGHER PERFORMANCE

CONCLUSION

"ZEN 2" Delivers Performance Uplift

- 15% IPC
- Up to 2x instructions per unit energy

Chiplet Deployment And Partitioning

- Enable efficient targeting of technology performance/power/cost
- Faster deployment of product stack Client CPU, Server CPU, Chipset

Resulting In Industry Leading Products

- 3rd generation Ryzen ("Matisse")
- 2nd generation EPYC ("Rome")

ENDNOTES

Slide 3: Claim: 15% IPC uplift.

AMD "Zen 2" CPU-based system scored an estimated 15% higher than previous generation AMD "Zen" based system using estimated SPECint®_base2006 results. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. GD-141.

Slide 4: Claim: Up to 2x instructions per unit energy.

Testing conducted by AMD Performance Labs as of 7/12/2019 with 2nd Generation Ryzen and 3rd Generation Ryzen engineering samples using estimated SPECint®_base2006 results. PC manufacturers may vary configurations yielding different results. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org.

Slide 5

- * AMD recommended settings for these security features can be found at
 https://developer.amd.com/wp-content/resources/Architecture Guidelines Update Indirect Branch Control.pdf.
- ** AMD recommended settings for these security features can be found at
 https://developer.amd.com/wp-content/resources/124441 AMD64 SpeculativeStoreBypassDisable Whitepaper final.pdf

Slide 15

AMD's product warranty does not cover damages caused by overclocking, even when overclocking is enabled via AMD hardware and/or software. GD-26

Slide 16, 17

See table at right for test system configurations.

- Compute: Testing by AMD performance labs using an AMD Ryzen™ 9 3900X, AMD Ryzen™ 7 3800X and AMD Ryzen™ 7 2700X in: DaVinci Resolve, Adobe Premiere, Cinebench R20, Handbrake 1.1.1, LAME MP3 Encoder, and POV-Ray 3.7. Results may vary.
- Gaming: Testing by AMD performance labs using an AMD Ryzen™ 9 3900X, AMD Ryzen™ 7 3800X and AMD Ryzen™ 7 2700X. All games tested at 1920x1080 with maximum in-game quality preset. Results may vary.
- Unless otherwise noted in the legend(s) of the chart, all performance analyses conducted and published throughout Computex, Next Horizon: Gaming, E3, and the Ryzen™ Processor Reviewer's Guide were performed on the following system configurations in an air-conditioned climate of 70°F/21°C.

Slide 18

2x PCIe BW over prior Ryzen generation is based on theoretical maximum bandwidth of PCIe Gen3 vs PCIe Gen4 speeds.

Component	3rd Gen AMD Ryzen™ CPUs	2nd Gen AMD Ryzen™ CPUs
Processors Tested	AMD Ryzen™ 9 3900X AMD Ryzen™ 7 3800X AMD Ryzen™ 7 3700X AMD Ryzen™ 5 3600X AMD Ryzen™ 5 3600	AMD Ryzen™ 7 2700X
Cooler	Noctua NH-D15S PWM Auto	Noctua NH-D15S PWM Auto
Motherboard	AMD Reference Motherboard	AMD Reference Motherboard
BIOS	AGESA ComboPI-1003	AGESA PinnaclePI-1007
RAM	2x8GB DDR4-3600 CL16	2x8GB DDR4-3200 CL14
Storage	Phison PS5016	Phison PS5016
GPU	GeForce RTX 2080	GeForce RTX 2080
GPU Driver	430.39	430.39
Operating System	Windows® 10 v1903	Windows® 10 v1903
Security Mitigations	Windows® 10 1903 Default	Windows® 10 1903 Default
UEFI CPPC2	Activated	Activated
Topology Awareness	Activated	Activated
Multi-Core Enhancement	N/A	N/A
Precision Boost Overdrive	Disabled	N/A

ENDNOTES (CONT.)

Slide 19, 20

- Faster D2D interconnect and assembly of all memory controllers and PHYs on a single IOD, improves effective memory latency in NPS1 over prior generation EPYC™.
- Each AMD EPYC processor has 8 memory channels. Each Intel Xeon Scalable processor has 6 memory channels. $8-6=2\div6=0.33$ AMD EPYC has 33% more memory bandwidth. Class based on industry-standard pin-based (LGA) X86 processors. EPYC-06.

Slide 20:

- Slide represents both published and estimated SPECrate®2017_int_peak performance. Estimates as of July 3, 2019 for AMD EPYC 48C, 32C and 8C processors using computer modeling of preproduction parts and SPECrate®2017_int_peak internal testing results. Results may vary with production silicon testing. Published results for EPYC 64C processor as of August 7, 2019: https://spec.org/cpu2017/results/res2019q3/cpu2017-20190722-16242.html. Intel results as of June 2019: Xeon Platinum: http://spec.org/cpu2017/results/res2019q2/cpu2017-20190429-12779.pdf Xeon Gold: http://spec.org/cpu2017/results/res2019q2/cpu2017-20190404-11744.pdf Xeon Silver: http://spec.org/cpu2017/results/res2019q2/cpu2017-20190430-13444.pdf; Xeon Bronze: http://spec.org/cpu2017/results/res2019q3/cpu2017-20190624-15468.pdf. SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. ROM-258

<u>Slide: 21:</u>

- Based on AMD internal testing of ANSYS FLUENT 19.1, Im6000_16m benchmark, as of July 17, 2019 of a 2P EPYC 7742 powered reference server versus a 2P Intel Xeon Platinum 8280 powered server. Results may vary. ROM-42
- Based on AMD internal testing of LSTC LS-DYNA R9.3.0, neon benchmark, as of July 17, 2019 of a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary. ROM-49
- Based on AMD internal testing of Altair RADIOSS 2018, T10M benchmark, as of July 17, 2019 using a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary. ROM-56
- Based on AMD internal testing of ESI VPS 2018.0, NEON4m benchmark, as of July 17, 2019 using a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary. ROM-63
- Based on AMD internal testing of Siemens PLM STAR-CCM+ 14.02.009, kcs_with_physics benchmark, as of July 17, 2019 using a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary. ROM-70

