
Wafer-Scale Deep Learning
Cerebras Systems



Largest Chip Ever Built

• 46,225 mm2 silicon

• 1.2 trillion transistors

• 400,000 AI optimized cores

• 18 Gigabytes of On-chip Memory

• 9 PByte/s memory bandwidth

• 100 Pbit/s fabric bandwidth

• TSMC 16nm process



Cerebras Wafer Scale Engine



Deep Learning: The Most Important Computational 

Workload of Our Time

• Proliferating across industries and applications

• Large and growing portion of workload in datacenter

• Between 2012 and 2018 this workload grew 300,000x



Deep Learning Training is Hard

Size:

• Billions-trillions of ops per sample

• Millions-billions of samples per training

• Peta-exa scale compute

Shape:

• Fine-grained: A lot of parallelism; 
presents opportunity to accelerate

• Coarse-grained: Inherently serial



Legacy Technologies: Brute Force Parallelism 

Fine-grained

• Dense vector processors (e.g. GPUs)

• Limited when compute not large uniform blocks

Coarse-grained

• Scale out clustering (e.g. PCIe, Ethernet, IB, NVLink)

• Run multiple instances of the same model (data parallel)

• Limited by inherent serial nature of problem

Result: scaling is limited and costly



Specialized Accelerators are the Answer

• Signal processing: DSP

• Packet processing: Switches

• Graphics: GPU

Neural Network Processing: ???



The Cerebras Architecture is Optimized for DL Compute

• Core optimized for neural network primitives

• Flexible, programmable core: NN architectures are evolving

• Designed for sparse compute: workloads contain fine-grained sparsity

• Local memory: weights & activations are local with low data reuse

• Fast interconnect: layer-to-layer with high bandwidth and low latency



Flexible Cores Optimized for Tensor Operations

Key to supporting rapidly evolving NN architectures

• Fully programmable compute core

• Full array of general instructions with ML extensions

• Flexible general ops for control processing

• e.g. arithmetic, logical, load/store, branch

• Optimized tensor ops for data processing

• Tensors as first class operands

• e.g. fmac [z] = [z], [w], a

3D 3D 2D scalar



Sparse Compute Engine for Neural Networks

NN operations like nonlinearities naturally create 
fine-grained sparsity

• Native, sparse processing enables higher 
efficiency and performance

• Dataflow scheduling in hardware

• Triggered by data

• Filters out sparse zero data

• Skips unnecessary processing

• Fine-grained execution datapaths

• Small cores with independent instructions

• Maximizes utilization

• Efficiently processes dynamic, non-uniform work

Dense Network

Sparse Network

ReLU



Traditional Memory Architectures not Optimized for DL

In neural networks, weights and activations are local, with low reuse

Traditional memory designs are punished

• Central shared memory is slow & far away

• Requires high data reuse (caching)

• Fundamental operation (matrix*vector) 
has low data reuse



A Memory Architecture that is Optimized for DL

In neural networks, weights and activations are local, with low data reuse

The right answer is distributed, 
high performance, on-chip memory

• All memory is fully distributed along with 
compute datapaths

• Datapath has full performance 
from memory



High-Bandwidth Low-Latency Interconnect

Low latency intra/inter-layer local connectivity with 
high bandwidth

• Fast and fully configurable fabric

• Small single-word messages

• All HW-based communication avoids SW overhead

• 2D mesh topology effective for local communication

• High bandwidth and low latency for local 
communication

• Higher utilization and efficiency than global topologies



Achieving Radical Performance Gains

Training neural networks requires more compute than can fit on a single die

• More AI optimized cores

• More high speed on chip memory

• More fabric bandwidth at low latency connecting cores together





Build Big Chips

Big Chips Process Data More Quickly-> Producing Answers In Less Time

• Cluster scale performance on a single chip

• GB of fast memory 1 clock cycle from core

• On-chip interconnect orders of magnitude faster than off-chip

• Model-parallel, linear performance scaling

• Training at scale, with any batch size, at full utilization

• Vastly lower power & less space



Programming the Wafer Scale Engine

• Neural network models expressed in common ML frameworks

• Cerebras interface to framework extracts the neural network

• Performs placement and routing to map neural network layers to fabric

• The entire wafer operates on the single neural network



The Challenges Of Wafer Scale

Building a 46,225 mm2, 1.2 Trillion Transistor Chip

Challenges include:

• Cross-die connectivity

• Yield

• Thermal expansion

• Package assembly

• Power and cooling



Challenge 1: Cross Die Connectivity

• Standard fabrication process requires 
die to be independent

• Scribe line separates each die

• Scribe line used as mechanical barrier 
for die cutting and for test structures



Cross-Die Wires

• Add wires across scribe line in 
partnership with TSMC

• Extend 2D mesh across die

• Same connectivity between cores and 
across scribe lines create a 
homogenous array

• Short wires enable ultra high 
bandwidth with low latency



Challenge 2: Yield

Impossible to yield full wafer with zero defects

• Silicon and process defects are inevitable even 
in mature process

Defects

Die



Redundancy is Your Friend

• Uniform small core architecture 
enables redundancy to address yield 
at very low cost

• Design includes redundant cores and 
redundant fabric links

• Redundant cores replace defective 
cores

• Extra links reconnect fabric to restore 
logical 2D mesh



Challenge 3: Thermal Expansion in the Package

• Silicon and PCB expand at different 
rates under temp

• Size of wafer would result in too much 
mechanical stress using traditional 
package technology



Connecting Wafer to PCB

• Developed custom connector to 
connect wafer to PCB

• Connector absorbs the variation while 
maintaining connectivity



Challenge 4: Package Assembly

• No traditional package exists

• Package includes:

• PCB

• Connector

• Wafer

• Cold plate

• All components require precise 
alignment



Custom Packaging Tools

• Developed custom machines and 
process

• Tools to ensure precision alignment

• Tools for special handling



Challenge 5: Power and Cooling

Concentrated high density exceeds 
traditional power & cooling capabilities

• Power delivery

• Current density too high for power 
plane distribution in PCB

• Heat removal

• Heat density too high for direct air 
cooling



Using the 3rd Dimension

• Power delivery

• Current flow distributed in 3rd dimension 
perpendicular to wafer

• Heat removal

• Water carries heat from wafer through 
cold plate





It’s working,

running customer workloads.

Stay tuned…
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