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• The current landscape of ML is rife with 

diverse models, 

HW/SW stacks, 

and evaluation methodologies

• ML model performance is impacted by the interplay between

frameworks, system libraries, compilers, and hardware

platforms

Currently, evaluating ML (models, frameworks or systems) is both

arduous and error-prone and there is lack of tools that

• makes it fair and simple to compare different ML innovations

• enables understanding ML model performance at each level of

the HW/SW stack

docs.mlmodelscope.org
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Profiling Across Stack

• An open-source, extendable and customizable framework to

evaluate and profile ML models at scale and across stack

• Command line, API or web interface

• End-to-end profiling at different abstraction levels

• Built-in support for Caffe, Caffe2, CNTK, MXNet, PyTorch,

TensorFlow, and TensorRT

• Runs on X86, PPC, ARM using CPU, GPU, and FPGA

• An online portal of continuously updated evaluation and

profiling results

• Documentation at docs.mlmodelscope.org

• https://arxiv.org/abs/1811.09737

• https://arxiv.org/abs/1904.12437

• Learn more about the center’s work at C3SR.com

Resources

MLModelScope

• To introspect model performance across the HW/SW stack, currently researchers have to switch

between tools and manually stitch the outputs (might not be possible)

• A scalable across-stack profiling scheme that correlates and aggregates profiles from different

profiling providers into a single timeline

• Automatic model performance analysis, characterization, and reporting pipeline

• While we currently focus on ML model performance on GPUs, the across-profiling design is

general and extensible
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Evaluation at Scale

Modular Design

Figure 1: Execution of an AI application at different levels of HW/SW abstractions

Figure 2: MLModelScope is built from a set of reusable components 

and is extendable and customizable
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Figure 3: MLModelScope’s runtime enables easy, scalable, and 

repeatable model evaluation across frameworks, models, and systems

Case Study: MLPerf Inference ResNet50 v1.5

� �� ��� ��� ��� ���
�

�

��

��

���������� ��������� (����/����)

��
���
�
��
��
��
��
��
��
��

(�
��
��

/�)

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

20

40

60

80

100

Layer Index

G
P
U
/C
P
U
L
a
te
n
c
y

Figure 5: Normalized GPU and CPU latency per layer for 

batch size 256

Key distributed design components:

• Common prediction interface which works for any

Framework and Model Predictors

• Profilers and Tracers for across stack profiling

The system design is flexible enough to be extended to

accommodate generic ML pipelines

Characterization of MLPerf_ResNet50_v1.5 in NGC TensorFlow 19.06 on EC2 P3 (V100 GPU)

Figure 4: Throughput across batch sizes. Throughput saturates at 

batch size 256
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Figure 7: Layer 
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Figure 9: The roofline analysis for all the layers for batch 

size 256 on V100, which has an ideal arithmetical intensity 

of 17.44 flops/byte. 

Figure 11: The throughput and GPU latency (log scale) 

across batch sizes and GPUs.
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Figure 10: The roofline analysis of the model across batch sizes

Figure 6: Layer 

Occurrence

Figure 8: Layer Allocated Memory

Motivation


