
MLModelScope: Evaluate and Profile ML Models at Scale and Across Stack
Cheng Li*, Abdul Dakkak*, Jinjun Xiong†, Wen-Mei Hwu*

{cli99, dakkak, w-hwu}@illinois.edu, jinjun@us.ibm.com
*University of Illinois Urbana-Champaign, †IBM Research Yorktown

• The current landscape of ML is rife with

diverse models,

HW/SW stacks,

and evaluation methodologies

• ML model performance is impacted by the interplay between

frameworks, system libraries, compilers, and hardware

platforms

Currently, evaluating ML (models, frameworks or systems) is both

arduous and error-prone and there is lack of tools that

• makes it fair and simple to compare different ML innovations

• enables understanding ML model performance at each level of

the HW/SW stack

docs.mlmodelscope.org

Query
Classification

Voice
Recognition

User Input Combine

Image
Classification

Decode
Input

Process
Output

Encode
Output

Image
Model

Conv

Conv Bias

Concat

Bias

Data FC

Relu

Relu

Malloc CUDNN Transpose FreeCUDNN

L1$
Access

Page
Migration

Power
Draw

Malloc Kernel Kernel Free

Application

Model

Framework

Layer

Library

Hardware

1

2

3

4

5

6

Profiling Across Stack

• An open-source, extendable and customizable framework to

evaluate and profile ML models at scale and across stack

• Command line, API or web interface

• End-to-end profiling at different abstraction levels

• Built-in support for Caffe, Caffe2, CNTK, MXNet, PyTorch,

TensorFlow, and TensorRT

• Runs on X86, PPC, ARM using CPU, GPU, and FPGA

• An online portal of continuously updated evaluation and

profiling results

• Documentation at docs.mlmodelscope.org

• https://arxiv.org/abs/1811.09737

• https://arxiv.org/abs/1904.12437

• Learn more about the center’s work at C3SR.com

Resources

MLModelScope

• To introspect model performance across the HW/SW stack, currently researchers have to switch

between tools and manually stitch the outputs (might not be possible)

• A scalable across-stack profiling scheme that correlates and aggregates profiles from different

profiling providers into a single timeline

• Automatic model performance analysis, characterization, and reporting pipeline

• While we currently focus on ML model performance on GPUs, the across-profiling design is

general and extensible

User Interface
Website Command Line

API
RPCREST C Library

Hardware
CPU GPU FPGA ASIC

Predictors

Caffe2 TensorFlow MXNet

TensorRT PyTorch …

Middleware

Data ManagerRegistry Eval Database

ML Artifacts
Manifests Dockerfiles Assets Repo

CNTKCaffe

Tracer Analyser

Evaluation at Scale

Modular Design

Figure 1: Execution of an AI application at different levels of HW/SW abstractions

Figure 2: MLModelScope is built from a set of reusable components

and is extendable and customizable

Common Prediction Interface

PyTo
rch

…

InceptionV3 FPGA

InceptionV3
FPGA Agent

InceptionV3
BitFile

MXNet Predictor

MXNet
Agent

MXNet
Wrapper

 TF Predictor

TF
Wrapper

AlexNet 1

Inception V1

Inception V2

Inception V3

ResNet 50

ResNet 101

SqueezeNet

TF
Agent

User Interface

Web Interface Command Line

Orchestration & Aggregation

Evaluation DatabaseRemote API Handler Distributed Registry

3

1

User Request

Model Manifest Hardware Requirements+

Hardware

CPU GPU FPGA ASIC

2

4

5

6

7

Figure 3: MLModelScope’s runtime enables easy, scalable, and

repeatable model evaluation across frameworks, models, and systems

Case Study: MLPerf Inference ResNet50 v1.5

� �� ��� ��� ��� ���
�

�

��

��

���������� ��������� (����/����)

��
���
�
��
��
��
��
��
��
��

(�
��
��

/�)

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

20

40

60

80

100

Layer Index

G
P
U
/C
P
U
L
a
te
n
c
y

Figure 5: Normalized GPU and CPU latency per layer for

batch size 256

Key distributed design components:

• Common prediction interface which works for any

Framework and Model Predictors

• Profilers and Tracers for across stack profiling

The system design is flexible enough to be extended to

accommodate generic ML pipelines

Characterization of MLPerf_ResNet50_v1.5 in NGC TensorFlow 19.06 on EC2 P3 (V100 GPU)

Figure 4: Throughput across batch sizes. Throughput saturates at

batch size 256

1 2 4 8 16 32 64 128 256 512
0

200

400

600

800

BatchSize

In
p
u
ts
/s
e
c

Figure 7: Layer

Latency

RTX 6000 V100 P100 P4 M60

1 2 4 8 16 32 64 128 256
0

200

400

600

800

Batch Size

T
h
ro
u
g
h
p
u
t
(i
n
p
u
ts
/s
)

1 2 4 8 16 32 64 128 256

5

10

50

100

500

1000

Batch Size

L
o
g
G
P
U
L
a
te
n
c
y
(m
s
)

Figure 9: The roofline analysis for all the layers for batch

size 256 on V100, which has an ideal arithmetical intensity

of 17.44 flops/byte.

Figure 11: The throughput and GPU latency (log scale)

across batch sizes and GPUs.

Add (23.5%)
Mul (22.65%)

Conv2D (22.65%)

Relu (20.94%)

AddN (5.56%)

Other (4.72%)

Conv2D (58.56%)

Add (11.43%)

Mul (11.26%)

Relu (9.71%)

AddN (6.93%)

Other (2.11%)

Mul (22.66%)

Conv2D (22.66%)

Add (22.52%)

Relu (19.62%)

AddN (9.88%)

Other (2.65%)

����������
��

�
�

�
�

� � �� �� �� �� ��
�

�

��

��

���������� ��������� (����/����)

��
���
�
��
��
��
��
��
��
��

(�
��
��

/�)

Figure 10: The roofline analysis of the model across batch sizes

Figure 6: Layer

Occurrence

Figure 8: Layer Allocated Memory

Motivation

