

de

O

. OF ENGINEERING

BIHIWE: Mixed-Signal Charge-Domain Acceleration of Deep Neural Networks

Soroush Ghodrati¹, Hardik Sharma², Sean Kinzer¹, Amir Yazdanbakhsh², Kambiz Samadi³, Nam Sung Kim⁴, Doug Burger⁵,

Hadi Esmaeilzadeh¹ Alternative Computing Technologies (ACT) Lab

¹UC San Diego, ²Georgia Tech, ³Qualcomm, ⁴UIUC, ⁵Microsoft

Our Approach: Enabling analog computing via wide, interleaved, and bit-partitioned arithmetic

Natural Language Processing

Percentage of operations in different layers										
NN	AlexNet	CIFAR-10	GoogLeNet	ResNet-18	ResNet-50	VGG-16	VGG-19	YOLOV3	PTB-RNN	PTB-LSTM
Convolution Layers	91.8	98.4	99.6	99.4	99.8	99.1	99.3	99.8	<u> </u>	
Fully-Connected Layers	8.1	1.5	0.1	0.5	0.1	0.8	0.6	0.1	99.9	99.9
Other Layers	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Amdahl's law motivates moving Convolution										
and Fully-Connected layers to analog domain								า		

(a) Bit-Partitioning Multiply-Accumulation

(b) Bit-Partitioned Vector (c) Wide Bit-Partitioned Rearrangement Vector Dot-Product

DNN Model Dataset		Top-1 Accuracy (With non-idealities)	Top-1 Accuracy (After fine-tuning)	Top-1 Accuracy (Ideal)	Accuracy Loss	
AlexNet	Imagenet	53.12%	56.64%	57.11%	0.47%	
YOLOv3	Imagenet	75.92%	77.1%	77.22%	0.21%	
CIFAR-10	CIFĂR-10	90.82%	91.01%	91.03%	0.02%	
VGG-16	Imagenet	70.31%	71.28%	71.46%	0.18%	
VGG-19	Imagenet	73.24%	74.20%	74.52%	0.32%	
ResNet-18	Imagenet	66.91%	68.96%	68.98%	0.02%	
ResNet-50	Imagenet	74.5%	75.21%	75.25%	0.04%	
GoogLeNet	Imagenet	67.15%	68.39%	68.72%	0.33%	
PTB-RNN	Penn TreeBank	1.1 BPC	1.6 BPC	1.1 BPC	0.0 BPC	
PTB-LSTM	Penn TreeBank	97 PPW	170 PPW	97 PPW	0.0 PPW	