High-Level Synthesis of Multithreaded Accelerators for Irregular Applications

Stefano Devecchi, Nicola Saporetti, Marco Minutoli, Vito Giovanni Castellana, Marco Lattuada, Pietro Fezzardi, Antonino Tumeo and Fabrizio Ferrandi

Summary

Irregular Applications exhibit:

- Unpredictable, fine-grained data accesses
- Pointer or linked list-based data structures (e.g., graphs, unbalanced trees, unstructured grids, sparse matrices), difficult to partition in a balanced way
- Task-level parallelism
- High synchronization intensity

Previous Architectural Templates

We have developed a set of solutions to address HLS for irregular Applications:

Parallel distributed Controller (PC)

allows controlling pools of parallel accelerators (i.e., "hardware tasks") with token passing mechanisms

References:

V. G. Castellana, A. Tumeo, F. Ferrandi: An Adaptive Memory Interface Controller for Improving Bandwidth Utilization of Hybrid and Reconfigurable Systems. 2014.

V. G. Castellana, M. Minutoli, A. Morari, A. Tumeo,

Memory-bound (exploiting available bandwidth is non-trivial due to high memory reference rates)

Conventional High-Level Synthesis flows address:

- Dense, regular data structures
- Simple memory models
- Instruction-level parallelism
- Compute-bound kernels (Digital Signal Processing-like)
- OpenCL works well for regular, compute-bound workloads

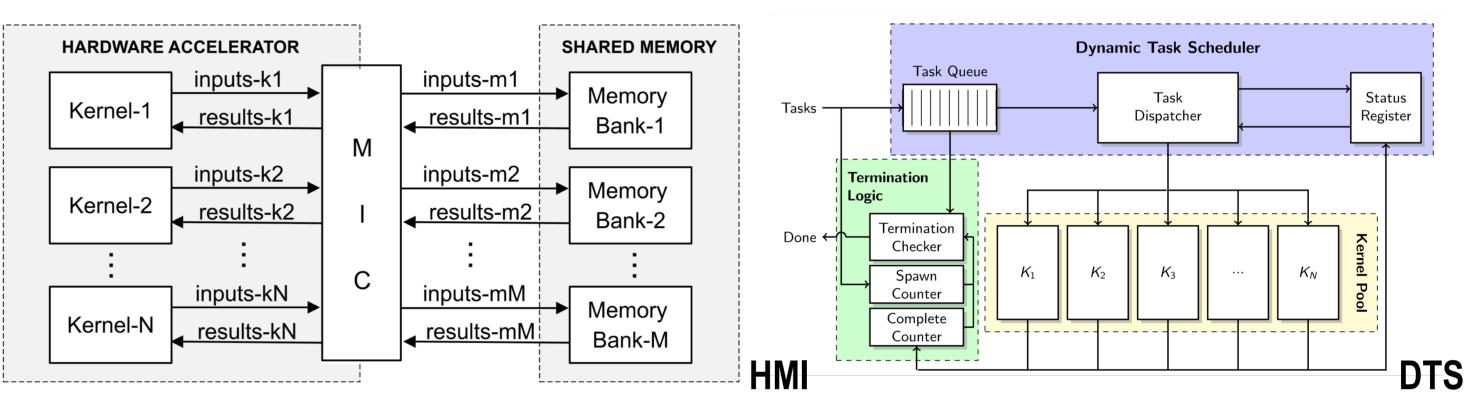
Our contributions:

- Parallel distributed Controller (PC) for complex loops nests
- Hierarchical Memory Interface (HMI), supporting multi-banked/multiported memory and atomic memory operations
- Dynamic Task Scheduler (DTS) for unbalanced loop iterations
- NEW: Support of temporal multithreading (and context switching) on the automatically generated, custom parallel accelerator array

Hierarchical Memory Interface (HMI)

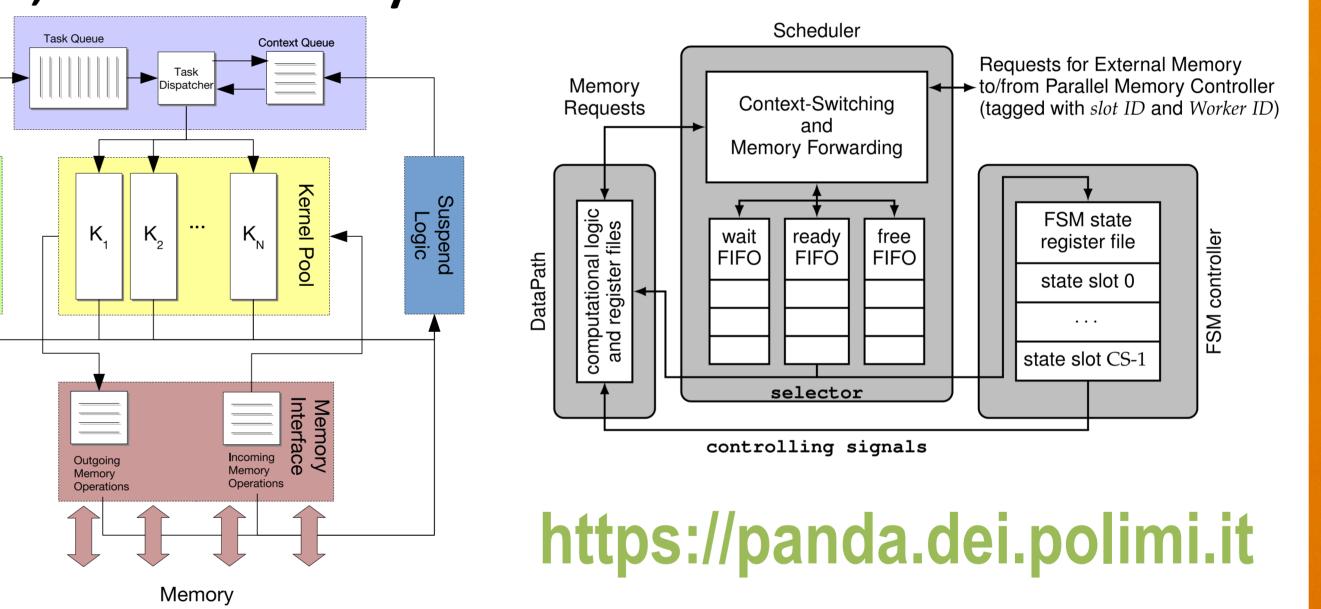
allows supporting multi-ported shared memory with dynamic address resolution and atomic memory

operations


Dynamic Task Scheduler (DTS) allows

launching a task as soon as an accelerator (kernel) in a pool is available (PC alone supports only blockbased fork-joins)

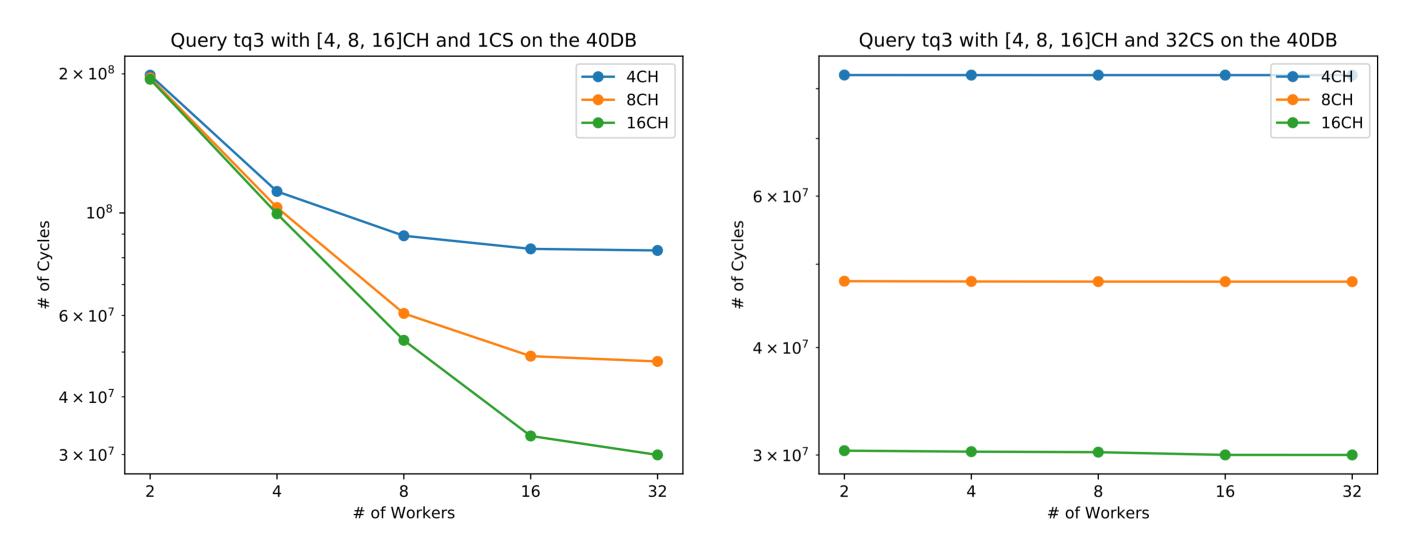
M. Lattuada, F. Ferrandi: High-Level Synthesis of RDF Queries for Graph Analytics. ICCAD 2015.


M. Minutoli, V. G. Castellana, A. Tumeo: High-Level Synthesis of SPARQL Queries. SC15 poster.

M. Minutoli, V. G. Castellana, A. Tumeo, M. Lattuada, F. Ferrandi: Efficient Synthesis of Graph Methods: A Dynamically Scheduled Architecture. ICCAD 2016.

Temporally Multithreaded Architecture Template and High-Level Synthesis Flow • New architecture template significantly extends the Drs designening Remarks, Pitch Party format

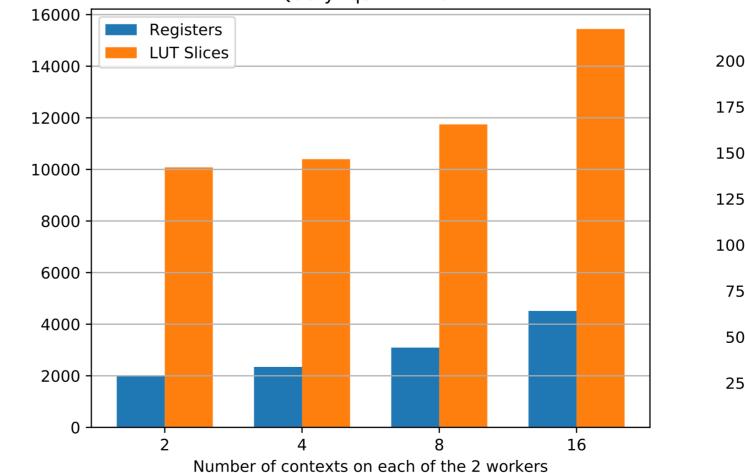
- Datapaths replicate registers depending on number of contexts
 Finite State Machines (FSMs) replicate state registers depending on the number of Tasks contexts

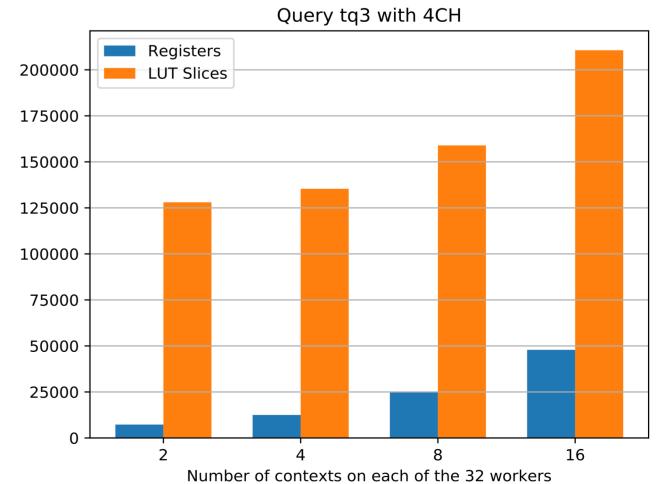

- Accelerator pool further decoupled from the memory interface with queues for pending memory operations. Memory operations include **atomics**.
- A task is suspended when it emits a **memory operation** (unknown latency)
- Task status stored in Context Queues
- A suspended task becomes ready again when memory operation completes
- Tolerates memory latency while computation continues
- Whole template integrated in an **open-source High-Level Synthesis tool**
- Tool synthesizes starting from **C** sources annotated with **OpenMP** and explores parameters, such as the number of contexts, accelerators, and memory channels

Experimental Evaluation

Synthesis of graph walks (graph pattern matching routines) to solve **Queries 1-7** of the Lehigh University Benchmark (LUBM) for the semantic web. Code is a set of nested loops that perform graph walks, look up labels, and count results with atomic memory operations in C. Latest version of Xilinx Vivado, Virtex-7 xc7vx690t.

Plots (only report query Q2), single context, and 32 contexts per accelerator:


- 2-32 accelerators (workers), 4-16 memory channels (CH)
- Demonstrate problem is memory bound
- Two accelerators and 32 contexts already maximize performance (memory) throughput)
- Area for 2 and 32 workers when varying number of contexts (overheads due to muxes)



Tables, all queries:

- Parallel Controller (PC) only, Dynamic Scheduler (DT), and multithreading (Svelto)
- Four accelerators (PC and DT) vs. one accelerator with eight contexts (four memory channels)

	Parallel Controller		Dynamic Scheduler		Svelto 01W-04CH-08CS			Parallel Controller	Dynamic Scheduler	Svelto 01W-04CH-08CS
	LUTs	Slices	LUTs	Slices	LUTs	Slices		# Cycles	# Cycles	# Cycles
Q1	13,469	4,317	10,844	3,503	6,923	2,246	Q1	1,001,581,548	287,527,463	269,153,871
Q2	5,280	1,607	4,636	1,335	4,293	1,408	Q2	2,801,694	2,672,295	3,470,665
Q3	13,449	4,308	10,664	3,467	6,841	2,242	Q3	98,163,298	95,154,310	84,268,006
Q4	7,806	2,399	6,175	1,918	5,222	1,696	Q4	42,279	19,890	18,584
Q5	5,750	1,738	5,330	1,578	4,396	1,424	Q5	13,400	8,992	8,514
Q6	10,600	3,426	8,125	2,633	5,811	1,868	Q6	629,671	199,749	171,290
Õ7	15,002	4,953	11,344	3,747	7,094	2,340	Q7	35,511,299	24,430,557	21,500,466

Marco Minutoli, Vito Giovanni Castellana, **Antonino Tumeo**

U.S. DEPARTMENT OF Pacific Northwest National Laboratory ENERGY P.O. Box 999, MS-IN: J4-30, Richland, WA 99352 USA {marco.minutoli, vitogiovanni.castellana, antonino.tumeo}@pnnl.gov

Stefano Devecchi, Nicola Saporetti, Pietro Fezzardi, Marco Lattuada, **Fabrizio Ferrandi**

DEIB – Politecnico di Milano P.za Leonardo Da Vinci 32, 20132 Milano Italy {stefano.devecchi, nicola.saporetti}@mail.polimi.it {pietro.fezzardi, marco.lattuada, fabrizio.ferrandi}@polimi.it

www.pnnl.gov