

Fujitsu High Performance CPU for the Post-K Computer

August 21st, 2018 Toshio Yoshida FUJITSU LIMITED

All Rights Reserved. Copyright © FUJITSU LIMITED 2018

Key Message

A64FX is the new Fujitsu-designed Arm processor

• It is used in the post-K computer

■A64FX is the first processor of the Armv8-A SVE architecture

• Fujitsu, as a lead partner, collaborated closely with Arm on the development of SVE

■A64FX achieves high performance in HPC and AI areas

• Our own microarchitecture maximizes the capability of SVE

Outline

Fujitsu Processor Development

- A64FX
 - Overview
 - Microarchitecture
 - Performance
 - Power Management
 - RAS
- Software Development
- Summary

Fujitsu Processor Development

DNA of Fujitsu Processors

A64FX inherits DNA from Fujitsu technologies used in the mainframes, UNIX and HPC servers

High reliability

Stability Integrity Continuity

High speed & flexibility

Thread performance Software on Chip Large SMP

High performance-per-watt

Execution and memory throughput Low power Massively parallel

(C) RIKEN

CPU w/ extremely high throughput

High performance Massively parallel Low power Stability and integrity

4

A64FX Designed for HPC/AI

<u>A64FX = CPU with extremely high throughput</u>

1. High Performance

HPC/AI apps. >> General purpose CPU Various data types (FP64/32/16, INT64/32/16/8)

2. High Throughput

Vector : 512-bit wide SIMD x 2 pipes /core Memory : HBM2 (extremely high B/W) Scalable : 48 cores, Tofu interconnect

3. High Efficiency

Performance (D|S|H)GEMM >90% Stream Triad >80% Perf-per-watt >> General purpose CPU

4. Standard

Binary compatibility with Armv8.2-A + SVE + SBSA* level3

*Arm's "Server Base System Architecture"

A64FX Chip Overview

Architecture Features

- Armv8.2-A (AArch64 only)
- SVE 512-bit wide SIMD
- 48 computing cores + 4 assistant cores*
 *All the cores are identical
- HBM2 32GiB
- Tofu
 6D Mesh/Torus
 28Gbps x 2 lanes x 10 ports
- PCIe Gen3 16 lanes

7nm FinFET

- 8,786M transistors
- 594 package signal pins

Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)

	A64FX (Post-K)	SPARC64 XIfx (PRIMEHPC FX100)
ISA (Base)	Armv8.2-A	SPARC-V9
ISA (Extension)	SVE	HPC-ACE2
Process Node	7nm	20nm
Peak Performance	>2.7TFLOPS	1.1TFLOPS
SIMD	512-bit	256-bit
# of Cores	48+4	32+2
Memory	HBM2	HMC
Memory Peak B/W	1024GB/s	240GB/s x2 (in/out)

A64FX Features

• FP16 and INT16/8 dot product are introduced for AI applications

	A64FX (Post-K)	SPARC64 XIfx (PRIMEHPC FX100)	SPAR64 VIIIfx (K computer)
ISA	Armv8.2-A + SVE	SPARC-V9 + HPC-ACE2	SPARC-V9 + HPC-ACE
SIMD Width	512-bit	256-bit	128-bit
Four-operand FMA	✓ Enhanced	\checkmark	\checkmark
Gather/Scatter	✓ Enhanced	\checkmark	
Predicated Operations	✓ Enhanced	\checkmark	\checkmark
Math. Acceleration	✓ Further enhanced	✓ Enhanced	\checkmark
Compress	✓ Enhanced	\checkmark	
First Fault Load	✓ New		
FP16	✓ New		
INT16/ INT8 Dot Product	✓ New		
HW Barrier* / Sector Cache*	✓ Further enhanced	✓ Enhanced	\checkmark

* Utilizing AArch64 implementation-defined system registers

FUITSU

A64FX Core Pipeline

- A64FX enhances and inherits superior features of SPARC64
 - Inherits superscalar, out-of-order, branch prediction, etc.
 - Enhances SIMD and predicate operations
 - <u>2x 512-bit wide SIMD FMA</u> + <u>Predicate Operation</u> + 4x ALU (shared w/ 2x AGEN)
 - 2x 512-bit wide SIMD load or 512-bit wide SIMD store

All Rights Reserved. Copyright © FUJITSU LIMITED 2018

Four-operand FMA with Prefix Instruction

MOVPRFX as a prefix instruction

For SVE, four-operand "FMA4" requires a prefix instruction (MOVPRFX) followed by destructive 3-operand FMA3

A64FX implementation for MOVPRFX

A64FX hides the overhead of its main pipeline by packing MOVPRFX and the following instruction into a single operation

Execution Unit

- Extremely high throughput
 - <u>512-bit wide SIMD x 2 Pipelines x 48 Cores</u>
 - <u>>90% execution efficiency</u> in (D|S|H)GEMM and INT16/8 dot product

Level 1 Cache

L1 cache throughput maximizes core performance

Sustained throughput for 512-bit wide SIMD load

 An unaligned SIMD load crossing cache line keeps the same throughput

"Combined Gather" mechanism increasing gather throughput

- Gather processing is important for real HPC applications
- A64FX introduces "Combined Gather" mechanism enabling to return up to two consecutive elements in a "128-byte aligned block" simultaneously

Many-Core Architecture

- A64FX consists of four CMGs (Core Memory Group)
 - A CMG consists of 13 cores, an L2 cache and a memory controller
 - One out of 13 cores is an assistant core which handles daemon, I/O, etc.
 - Four CMGs keep cache coherency by ccNUMA with on-chip directory
 - X-bar connection in a CMG maximizes high efficiency for throughput of the L2 cache
 - Process binding in a CMG allows linear scalability up to 48 cores
- On-chip-network with a wide ring bus secures I/O performance

High Bandwidth

Extremely high bandwidth in caches and memory

 A64FX has out-of-order mechanisms in cores, caches and memory controllers. It maximizes the capability of each layer's bandwidth

Performance

- A64FX boosts performance up by microarchitectural enhancements, 512-bit wide SIMD, HBM2 and process technology
 - > 2.5x faster in HPC/AI benchmarks than SPARC64 XIfx (Fujitsu's previous HPC CPU)
 - The results are based on the Fujitsu compiler optimized for our microarchitecture and SVE

A64FX Benchmark Kernel Performance (Preliminary results)

Power Management

"Energy monitor" / "Energy analyzer" for activity-based power estimation

✓ Energy monitor (per chip) : Node power via Power API^{*} (~msec) *Sandia National Laboratory

- Average power estimation of a node, CMG (cores, an L2 cache, a memory) etc.
- ✓ Energy analyzer (per core) : Power profiler via PAPI^{**} (~nsec) ** Performance Application Programming Interface
 - Fine grained power analysis of a core, an L2 cache and a memory
- → Enabling chip-level power monitoring and detailed power analysis of applications

<A64FX Energy monitor/ Energy analyzer>

Power Management (Cont.)

- A64FX provides power management function called "Power Knob"
 - Applications can change hardware configurations for power optimization
- Power knobs and Energy monitor/analyzer will help users to optimize power consumption of their applications

All Rights Reserved. Copyright © FUJITSU LIMITED 2018

Fujitsu Mission Critical Technologies

- Large systems require extensive RAS capability of CPU and interconnect
- A64FX has a mainframe class RAS for integrity and stability. It contributes to very low CPU failure rate and high system stability
 - \checkmark ECC or duplication for all caches
 - ✓ Parity check for execution units
 - \checkmark Hardware instruction retry
 - ✓ Hardware lane recovery for Tofu links
 - ✓ ~128,400 error checkers in total

< A64FX RAS Mechanism>

Units	Error Detection and Correction
Cache (Tag)	ECC, Duplicate & Parity
Cache (Data)	ECC, Parity
Register	ECC (INT), Parity(Others)
Execution Unit	Parity, Residue
Core	Hardware Instruction Retry
Tofu	Hardware Lane Recovery

<A64FX RAS Diagram>

Yellow: 1 bit error Detectable Gray : 1 bit error harmless

Software Development

- RIKEN and Fujitsu are developing software stacks for the post-K computer
 - Fujitsu compilers are optimized for the microarchitecture, maximizing SVE and HBM2 performance
- We collaboratively work with RIKEN / Linaro / OSS communities / ISVs and contribute to Arm HPC ecosystem

Summary

- A64FX is the first processor of the Armv8-A SVE architecture. It is used for the post-K computer
- Fujitsu's proven microarchitecture achieves high performance in HPC and AI areas
- Fujitsu collaboratively works with partners and continuously contributes to Arm ecosystem
- We will continue to develop Arm processors

FUJTSU

shaping tomorrow with you

Abbreviations

A64FX

- RSA: Reservation station for address generation
- RSE: Reservation station for execution
- RSBR: Reservation station for branch
- PGPR: Physical general-purpose register
- PFPR: Physical floating-point register
- ■PPR: Physical predicate register
- CSE: Commit stack entry
- ■EAG: Effective address generator
- ■EX : Integer execution unit
- FL : Floating-point execution unit
- PRX : Predicate execution unit

Tofu: Torus-Fusion