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DeePhi: Now Part of Xilinx
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Long History, Close Collaboration, and Better Future

Collaboration with Xilinx
University Program

Development of products on
Xilinx FPGA platform since

inception of DeePhi

Face recognition
Video analysis

Speech recognition acceleration
……

Deep learning acceleration
Time series analysis

Stereo vision
……

Co-Marketing and Co-Sales
with Xilinx Team

Data Center
Automotive

Video surveillance
……
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We Provide Full-Stack Deep Learning Solutions

Models

Framework

Tools

IP &

AI Platforms

Face detection       Pose estimation          Video analytics Lane detection                   Vehicle detection             Segmentation

Z7020 Z7020 ZU2 ZU2 ZU9
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DeePhi’s Solution now on AWS and Huawei Cloud!

https://aws.amazon.com/marketplace/pp/B079N2J42R?from=timeline&isappinstalled=0
https://market.huaweicloud.com/product/00301-110982-0--0 
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Evolution of Algorithms
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In 2018, We Are Still Using Old Algorithms as Benchmark

LeNet-5: 1998 AlexNet: 2012

VGG-Net: 2014 ResNet: 2015GoogLeNet: 2014
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Changes in 2015-2018 Are More than That before 2015

ReLU is not the only widely used activation function

Depth-wise Conv and point-wise Conv
are widely used

Channels can have different weights

Group Conv: Not every input channel is connected
to every output channel
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Changes in 2015-2018 Are More than That before 2015

DenseNet: Layers are not necessarily serial

Dilated Conv: Conv kernels are not
necessarily dense

Deformable Conv: Conv kernels are not
necessarily rectangle
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Evolution of DeePhi’s DPU
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From DPU-V1 to DPU-V2.5

Architecture (single core) DPU-V1 DPU-V2 DPU-V2.5

Peak performance (GOPS) 120 1350 1367

On-chip Memory (KB) 300 1123 1123

LUT 30k 75k 37k

FF 35k 146k 80k

Frequency (MHz) 214 333 333

Typical FPGA Platform Zynq 7020 (28nm) ZU9 (16nm) ZU9 (16nm)

Total Cores 1 2 3

Total Peak Perf (GOPS) 120 2700 4100

Direction of improvements:
Better scheduling strategy, higher resource utilization,
more supported features, and more flexibility
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1. Feature map
(a) Elementwise

2. Convolution
(a) Arbitrary kernel size
(b) Arbitrary stride
(c) Arbitrary padding size

1. Convolution
(a) Kernel size=3*3
(b) Stride=1
(c) Arbitrary padding size

From DPU-V1 to DPU-V2.5

DPU-V1 DPU-V2

2. Pooling
(a) Kernel size=2*2
(b) Stride=2

3. Activation function
(a) ReLU

3. Pooling
(a) avg/max pooling 
(b) Size=2*2,3*3
(c) Stride=1,2
(d) Arbitrary padding size
4. Activation function: (a) ReLU
5. FC(INT8)
6. Multi-Batch
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From DPU-V1 to DPU-V2.5

1. Feature map
(a) Elementwise
(b) Split
(c) Concat
(d) Resize
(e) Batch Normalization

2. Convolution
(a) arbitrary kernel size
(b) arbitrary stride
(c) arbitrary padding size
(d) Deconv
(e) Dilated Conv
(f ) Depthwise Conv

3.Pooling
(a) avg/max pooling
(b) arbitrary size
(c) arbitrary stride
(d) arbitrary padding
(e) ROI pooling

4.Activation function
(a) ReLU
(b) PReLU
(c) LeakyReLU
(d) Sigmoid 

5.FC (INT8/FP32)
6.Multi-BatchDPU-V2.5
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(a) Classic Convolution

Depth-wise Conv Point-wise Conv

Output fmaps Input
fmaps

Input
fmaps

Output fmaps

KxK Conv
Filters 1x1 Conv

Filters

(b) Depth-wise Separable Convolution

Case Study: Depth-Wise (DW) Convolution

KxK Conv
Filters

Depth-Wise: Number of groups = Number of channels
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Efficient Networks May Not Be Friendly to Hardware

6.1x 7.3x 7.2x       13.7x

3.1x         2.8x

Times of improvement of MobileNet-v1/v2 over ResNet-50 on Tesla P100 GPU
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Parameters Computations Runtime

Model # Parameters # Computations Runtime (ms) Reference Top-1
Accuracy

ResNet-50 25.5M 7.72 GOPS 4.20 76.1%

MobileNet-v1 4.2M 1.14 GOPS 1.37 70.6%

MobileNet-v2 3.5M 0.60 GOPS 1.49 72.0%
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Model Computations Reference Top-1 Accuracy Performance FPS Utilization Rate Year

VGG-16 30.7 GOPS 71.9% 2.36 TOPS 76.9 87.30% 2013

GoogleNet 3.89 GOPS 71.0% 0.99 TOPS 254 36.80% 2014

ResNet-50 7.72 GOPS 76.1% 1.06 TOPS 137 39.30% 2015

MobileNet-v1 1.14 GOPS 70.6% 0.77 TOPS 675 28.62% 2017

Efficient Networks May Not Be Friendly to Hardware

26.9
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VGG-16 GoogleNet ResNet-50

Computations

FPS

Times of improvement of MobileNet-v1 over three benchmark networks on DeePhi’s DPU on ZU9 FPGA
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• The Communication/Computation (CTC) Ratio of depth-wise is very high 
• Point-wise (1x1, PW) conv is memory-bound
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CTC Ratio of MobileNet-V1
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Why Depth-Wise Convolution so Slow?
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(a) Fused-layer Convolution for MobileNet

N

M K

1

Depth-wise
Conv

Point-wise
Conv

Input
fmaps

Output fmapsFilters

Filters
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Ratio of workload (p.w./d.w.)

Depthwise Conv 
activation buffer

Pointwise Conv 
activation buffer

sPE PE PE PE

ActivationWeightsActivation

Weights buffer

(b) The workload ratio between adjacent PW-Conv 
and DW-Conv

(c) Computing Architecture

Our Strategy Resolving the Problem
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Utilization Improvement on MobileNet-v1 with Layer Fusion

Results on ZU9 FPGA

• Dual cores on ZU9
FPGA

• Each core uses 1024KB
BRAM

• In total 3648KB BRAM
on ZU9 FPGA

Simulation results
with doubled BRAM

• Each core uses
2048KB BRAM
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DL Software: New Changes
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Core API

Driver

Runtime
Loader

Tracer

DPU Platform

DL Framework

Compression
Pruning Quantization

Compilation
Compiler Assembler

DL Application

DNNDK: Make it Easy to Develop
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Node fusion/decomposition & data stream optimization 

Conv

Relu

Pool

Conv+Relu+
Pool

Conv Conv

Elementwise

Conv Conv+
Elementwise

Vertical fusion Vertical fusion

Conv Conv

Conv+Conv

Conv Conv

Concat

Pool

Horizontal fusion Decomposition

Conv+Pool Conv+Pool

More Optimizations Should be Considered in Compiler

On-chip RAM

DPU
Computing complex
PE PE PE PE∙∙∙∙

Off-chip RAM

Memory allocation/scheduling/reuse to
improve performance
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Summary
5



© 2018 DeePhi Tech. All Rights Reserved. 26Page www.deephi.com

Summary

• Algorithms are evolving at an increasingly faster rate
• Modern neural networks like MobileNet are not necessarily friendly for hardware

acceleration on existing ASICs
• We propose a fusing-layer strategy together with compiling optimization to better

accelerate Depth-wise/Point-wise convolutions
• More optimization strategies for new types of networks should be considered

• Pure hardware evolves slowly due to the long period in designing and manufacturing chips
• FPGA can be benefited from latest DL techniques in both hardware and software side
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