THE NVIDIA DEEP LEARNING ACCELERATOR

INTRODUCTION NVDLA – NVIDIA Deep Learning Accelerator

Developed as part of Xavier - NVIDIA's SOC for autonomous driving applications Optimized for Convolutional Neural Networks (CNNs), computer vision

Open source architecture and RTL release

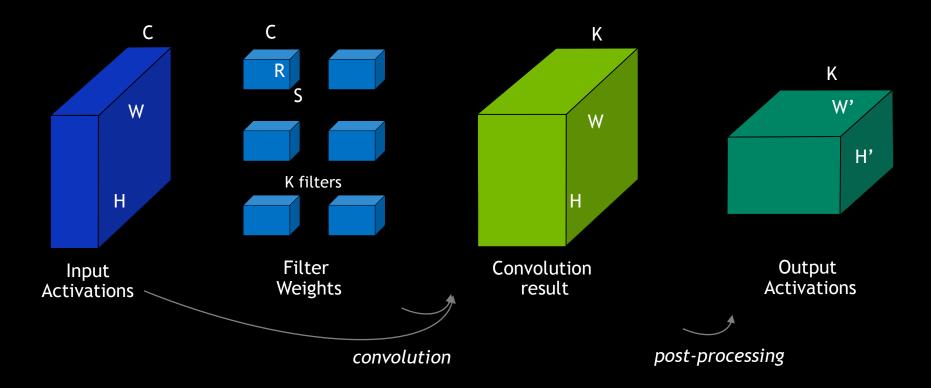
Encourage Deep Learning applications

Invite contributions from the community

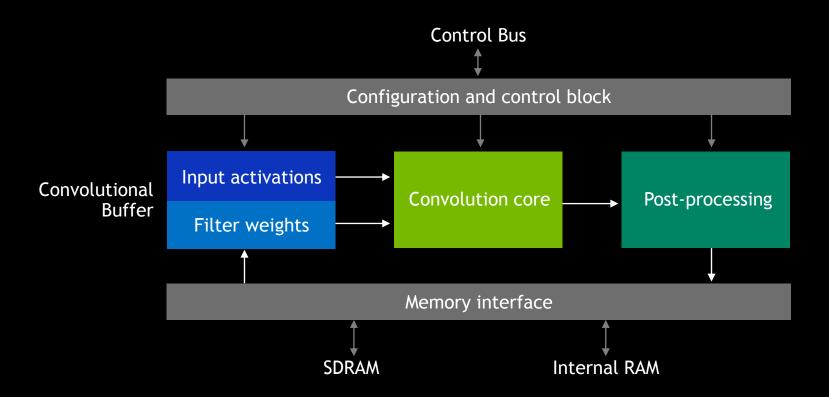
Targeted towards edge devices, IoT

Industry standard formats and parameterized

CNN INFERENCE


Convolutional Neural Network

Convolutional and fully connected layers


CNN INFERENCE

One Convolutional Layer

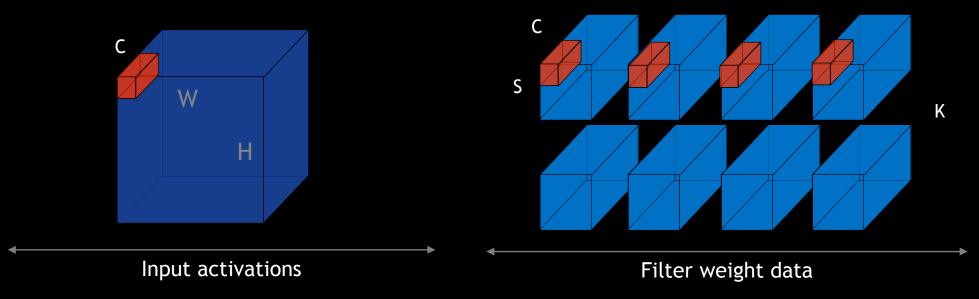
ARCHITECTURE OVERVIEW

Top Level Architecture

ARCHITECTURE OVERVIEW

Memory Considerations

Convolutional buffer size vs Memory Bandwidth trade off


- If conv buffer can fit 1/N'th of total weights, activations need to be read N times
- Example: GoogleNet layer inception 4a/3x3, 16-bit precision
 - Input activations: 1.2 MB
 - Filter weights: 360KB
- If conv buffer is 128KB, then minimal bandwidth for activations is $3 \times 1.2MB = 3.6MB$

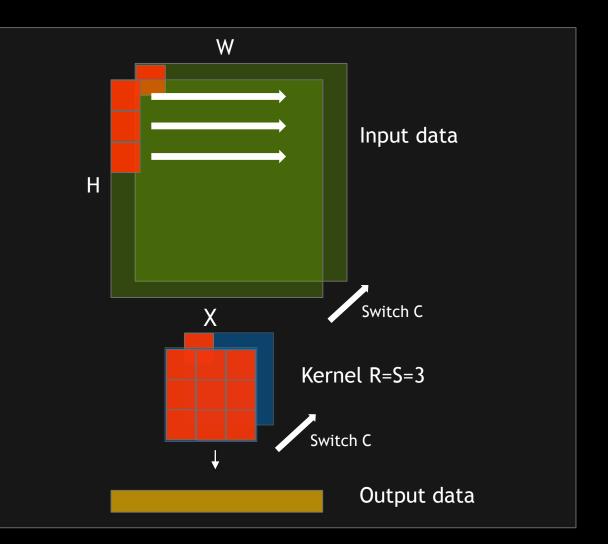
Convolutional buffer has to be multi-ported, internal RAM can be single ported

CONVOLUTION CORE Atomic Operation (Each Clock Cycle)

Example: 64 activations x (4 filters x 64 weights) \rightarrow 4 partial outputs

256 MACs per clock cycle

CONVOLUTIONAL CORE Order of Calculations


Calculate one stripe of outputs at a time

Change activations first, then weights

In the slide show:

C-dimension not shown

Only one kernel shown

CONVOLUTION CORE

Area and Power Considerations

More samples in C-direction per atomic operation:

- Allows for wider Wallace tree (half rather than full adders)
- Causes more wasted MACs on non-aligned boundaries

Keeping one operand (weights) of MACs constant for a number of cycles saves dynamic power and reduces data transfers

Calculate full sums rather than partial sums as latter require higher precision before rounding (better to stream/store inputs than outputs)

AREA, PERFORMANCE, AND POWER

Configurations

SMALL CONFIGURATION

INT8 data path

1 RAM interface

No advanced features

LARGE CONFIGURATION

INT8, INT16, FP16 data path 2 RAM interfaces Integrated controller Weight compression

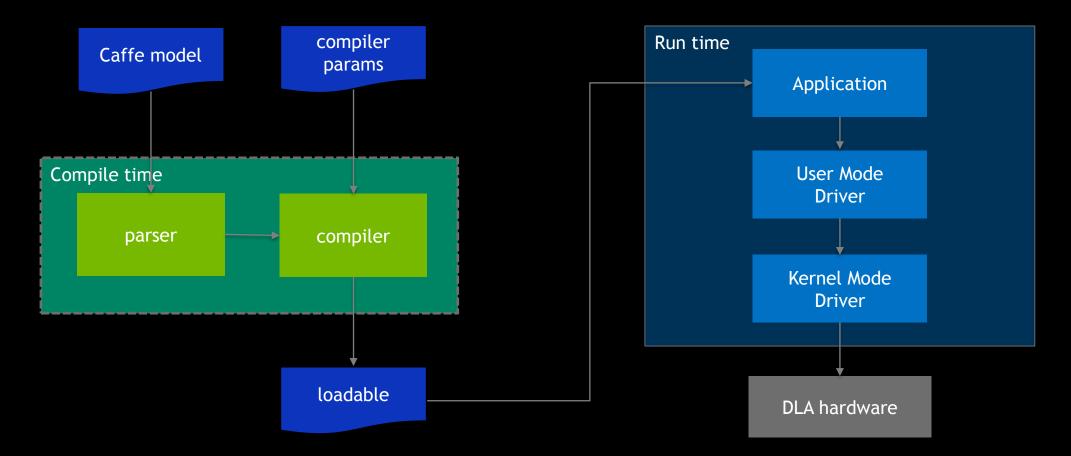
•••

AREA, PERFORMANCE, POWER

Small Configurations (16nm, 1GHz)

INT8 MACs (# instances)	Conv. Buffer (KB)	Area (mm2)	Memory BW (GB/s)	ResNet50			
				Perf (frames/s)	Power (mW)	Power Eff. (DL TOPS/W)	
2048	512	3.3	20	269	388	5.4	
1024	256	1.8	15	153	185	6.3	
512	256	1.4	10	93	107	6.8	
256	256	1.0	5	46	64	5.6	
128	256	0.84	2	20	41	3.8	
64	128	0.55	1	7.3	28	2.0	

Area is synthesis area + internal RAMs, does not account for layout inefficiencies Power is for DLA incl. internal RAMs, excluding SOC & external RAMs Calibrated to Xavier silicon - NVIDIA flows, libraries, RAM compilers, ... DL TOPS == #convolutional MAC operations * 2


AREA, PERFORMANCE, POWER

Large Configuration (16nm, 1GHz)

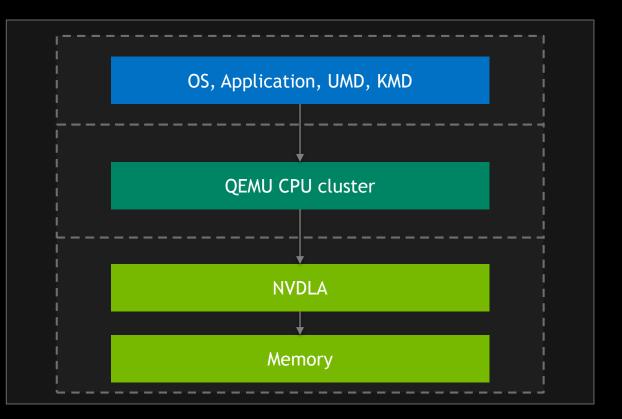
Configuration			Internal	ResNet50		
INT16/FP16	512 MACs	Data Type	RAM Size	Perf (frames/s)	Power (mW)	Power Eff. (DL TOPS/W)
INT8	1024 MACs					
Conv Buffer	256 KB	INT8	none	165	267	4.8
Area	2.4 mm ²	FP16	none	59	276	1.6
DRAM BW	15 GB/s	INT8	2M	230	348	5.1
TCM R/W BW	25/25 GB/s	FP16	2M	115	475	1.9

Area and power do not include Tightly Coupled Memory (TCM)

SW ARCHITECTURE

NVDLA VIRTUAL PLATFORM

SW & RTL prototyping for all configs


Two formats for NVDLA + Memory

C-model

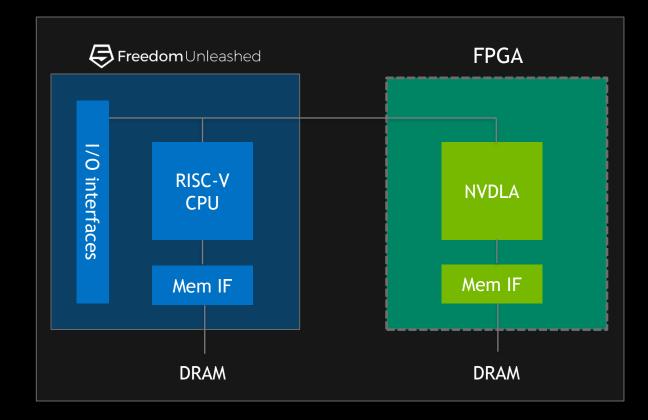
FPGA board

Easy access via cloud

Amazon Web Services (AWS)

OPEN SOURCE SOC PROTOTYPE NVDLA + SiFive RISC-V

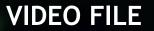
Demo at SiFive booth


NVDLA config

Small config

2048 MACs

512 KB


YOLOv3 object recognition

Inserting video: Insert/Video/Video from File. Insert video by browsing your directory and selecting OK.

File types that works best in PowerPoint are mp4 or wmv

CHECK IT OUT FOR YOURSELF

OR CONTRIBUTE! http://nvdla.org/index.html

Documentation and source code are available under permissive license Community contributions under Contributor License Agreement are encouraged

