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Introducing the Arm Machine Learning (ML) Processor

2

First design targets mobile with derivatives for additional segments

Optimized ground-up architecture for machine learning processing

Massive efficiency uplift from CPUs, GPUs and DSPs

Open-source stack enables easy deployment

Architecture scales from IoT to server and automotive  . 
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Arm’s ML Processor

• 16 Compute Engines

• ~ 4 TOP/s of convolution throughput (at 

1 GHz)

• Targeting > 3 TOP/W in 7nm and 

~2.5mm2

• 8-bit quantized integer support

• 1MB of SRAM

• Support for Android NNAPI and 

ARMNN

• Optimized for CNNs, RNN support

• To be released 2018
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4 Key Ingredients for a Machine Learning Processor

• Static scheduling

• Efficient convolutions 

• Bandwidth reduction mechanisms

• Programmability/flexibility
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Arm’s ML processor: Static Scheduling
• CNNs are statically analyzable

• Compiler takes a NN and maps it 

to a command stream consumed 

by the ML processor
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Arm’s ML processor: Static Scheduling
• No caches
• Simplified flow control
• Simplified hardware (but requires careful 

co-design with the compiler)
• Relatively predictable performance
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4 Key ingredients for a Machine Learning Processor
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• Efficient convolutions 
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Convolutions
• Output Feature Maps (OFMs) are 

interleaved across the compute 
engines (each CE working on a 
different OFM)

• The weights for OFM-X will be 
resident in the SRAM of the CE which 
is processing OFM-X

• Input Feature Maps (IFMs) are 
interleaved across all SRAM banks
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Machine Learning Processor
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Convolutions
• MAC Engine capable of eight 16-wide 

dot products (8b)
• MAC Engine  = 2 * 8 * 16 = 256 ops/cycle
• 16 MAC Engines. = 16 * 256 = 4096 ops/cycle
• 4.1 TOPs @ 1 GHz
• 32b accumulators

• The utilization of the MAC engine 
depends on conv parameters 

• Datapath gating for zeros (~50% 
power reduction)
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Convolutions
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Convolutions
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Convolutions
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Convolutions
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Convolutions
• POP IP for the MAC Engines, Tuned 

for 16nm and 7nm
• Providing 40% area reduction and 10-20% 

power improvements
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4 Key ingredients for a Machine Learning Processor

• Static scheduling

• Efficient convolutions 

• Bandwidth reduction mechanisms

• Programmability/flexibility
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Importance of Weight and Feature Map Compression

• DRAM power can be nearly as high as the 
processor power itself

• ML processor supports
• Weight Compression
• Activation Compression
• Tiling

Power Breakdown

Weight DDR Power Activation DDR Power ML Processor Power
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ML Processor Feature Map Compression 

• Compression per 8x8 block

• 3.3x compression for Inception V3

ML processor saves average of 3x with lossless compression

Count of zeros per 8x8 block

Unique non-ze
ro values
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Source: Arm Machine Learning group

High zero count indicates good 

compression behavior

Standard padding behaviors for 

tensors introduce more zeros

Many maps have repeating non-

zeros, again aiding compression 
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Weight Compression and Pruning

• Weight bandwidth dominates later layers of networks
• Pruning during the training phase increases the 

number of zeros

• Clustering can “snap” the remaining non-zero weights 
to a smaller set of possible NZ values

• Models are compressed offline during compilation 
phase to our format which exploits both clustering and 
pruning

• Weights stay compressed until read from internal 
SRAM

Han et al
Learning both weights and Connections for Efficient Neural Networks

October 2015
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Tiling

• Compiler-based scheduling further reduces 
bandwidth

• Scheduling tuned to keep working set in SRAM

• Tiled or wide scheduling avoids trips to DRAM

• Multiple outputs calculated in parallel from same input 

• Intermediate stages are pipelined between MAC and PLE

• Possible because of static scheduling (compile time)

Szegedy et al
Inception-v4, Inception-ResNet and the Impact of 

Residual Connections on Learning
February 2016



21 © 2018 Arm Limited 

4 Key ingredients for a Machine Learning Processor

• Static scheduling

• Efficient convolutions 

• Bandwidth reduction mechanisms

• Programmability/flexibility
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Programmable Layer Engine (PLE)

• State of the art in neural networks is still 
evolving

• Programmable Layer Engine
• Provides design future-proofing
• Benefits from existing Arm technology 

• No hardware assumptions on operator 
ordering
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Programmable Layer Engine (PLE), cont.
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• We have extended ARM CPU technology with 

vector and NN extensions targeted for non-

convolution operators (pooling, relu, etc)
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Programmable Layer Engine (PLE), cont.

• The results of MAC computation are sent to 
the PLE
• The PLE register file is populated directly
• Interrupts are sent to activate PLE processing 
• The majority of operators are performed by a 16-lane

vector engine – as they often pool or reduce

• Results are emitted back to SRAM
• A micro-DMA unit writes data out
• They are then fetched back into CE for subsequent 

processing
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Scalability

• Multiple ways to scale
• Number of Compute Engines
•MAC Engine throughput
• Number of ML processors
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Arm’s ML processor: Summary

• 16 Compute Engines

• ~ 4 TOP/s of convolution throughput (at 
1 GHz)

• Targeting > 3 TOP/W in 7nm and 
~2.5mm2

• 8-bit quantized integer support

• 1MB of SRAM

• Support for Android NNAPI and 
ARMNN

• To be released 2018
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