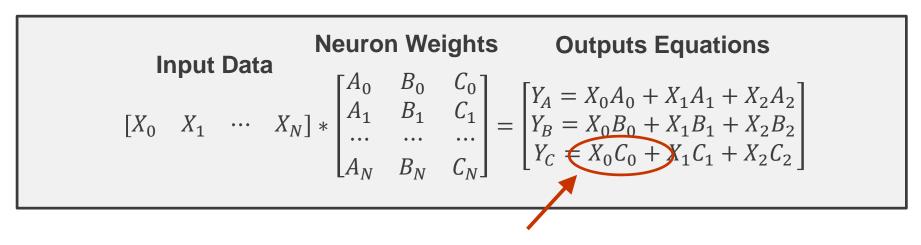
MYTHIC

Analog Computation in Flash Memory for Datacenter-scale Al Inference in a Small Chip

Dave Fick, CTO/Founder

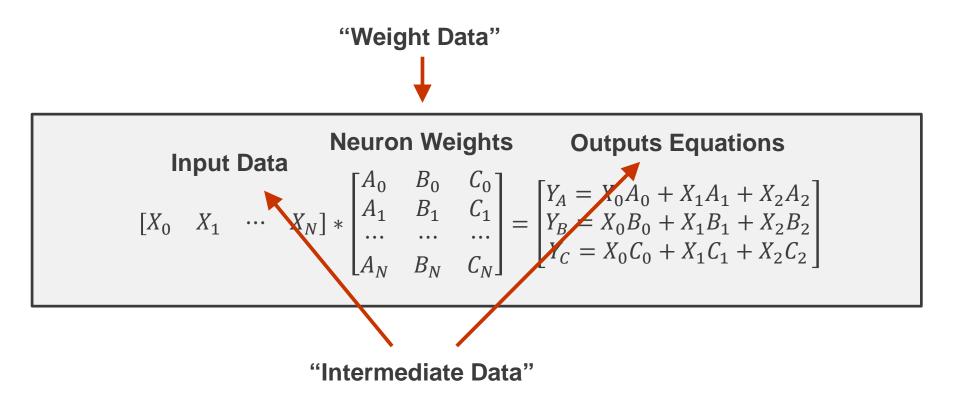
Mike Henry, CEO/Founder



About Mythic

- Focused on high-performance Edge AI
 - Full stack co-design: device physics to new algorithms and applications
- Founded in 2012 by Mike Henry and Dave Fick
 - While working with the Michigan Integrated Circuits Lab (MICL)
- Raised \$55M from top-tier investors: DFJ, SoftBank, Lux, DCVC
 - Offices in Redwood City & Austin
 - 60+ employees

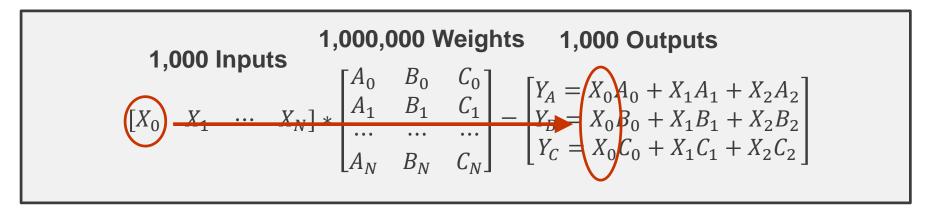
DNNs are Largely Multiply-Accumulate


Primary DNN Calculation is Input Vector * Weight Matrix = Output Vector

Key Operation: Multiply-Accumulate, or "MAC"

Figure of Merit: How many picojoules to execute a MAC?

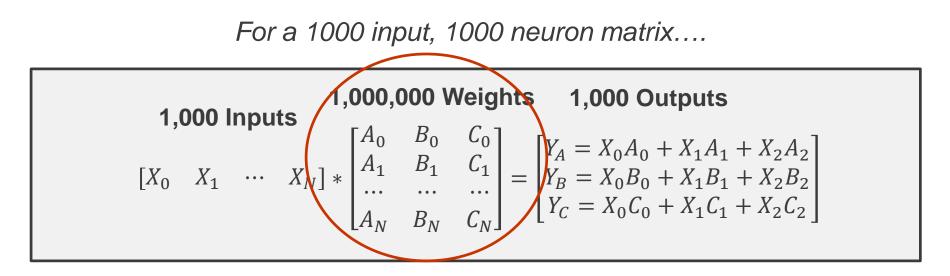
Memory Access Includes Weight Data and Intermediate Data



MYTHIC

© 2018 Mythic. All rights reserved.

Intermediate Data Accesses are Naturally Amortized


For a 1000 input, 1000 neuron matrix....

Intermediate data accesses are amortized **64-1024x** since they are used in many MAC operations

Weight Data Accesses are Not Amortized

Weight data could need to be stored in *DRAM*, and it does not have the same amortization as the intermediate data

DNN Processing is All About Weight Memory

- I0+M parameters to store
- 20+B memory accesses
- How do we achieve...
 - High Energy Efficiency
 - High Performance
 - "Edge" Power Budget (e.g., 5W)

	\frown			
Network	Weights	MACs	@ 30 FPS	
AlexNet ¹	61 M	725 M	22 B	
ResNet-18	11 M	1.8 B	54 B	
ResNet-50	23 M	3.5 B	105 B	
VGG-19 ¹	144 M	22 B	660 B	
OpenPose ²	46 M	180 B	5400 B	
Very hard to fit this1: 224x224 resolutionin an Edge solution2: 656x368 resolution				

Common Techniques for Reducing Weight Energy Consumption

Weight Re-use

- Focus on CNN
 - Re-use weights for multiple windows
 - Can build specialized structures
 - 8 Not all problems map to CNN well
- Focus on Large Batch
 - Re-use weights for multiple inputs
 - *⊗* Edge is often batch=1
 - ⊗ Increases latency

Weight Reduction

- Shrink the Model
 - Use a smaller network that can fit onchip (e.g., SqueezeNet)
 - Possibly reduced capability
- Compress the Model
 - Use sparsity to eliminate up to 99% of the parameters
 - Use literal compression
 - Possibly reduced capability
- Reduce Weight Precision
 - 32b Floating Point => 2-8b Integer
 - Possibly reduced capability

Key Question: Use DRAM or Not?

Benefits of DRAM

- © Can fit arbitrarily large models
- © Not as much SRAM needed on chip

Drawbacks of DRAM

- ^O Huge energy cost for reading weights
- ^O Limited bandwidth getting to weight data
- Variable energy efficiency & performance depending on application

Common NN Accelerator Design Points

	Enterprise With DRAM	Enterprise No-DRAM	Edge With DRAM	Edge No-DRAM
SRAM	<50 MB	100+ MB	< 5 MB	< 5 MB
DRAM	8+ GB	-	4-8 GB	-
Power	70+ W	70+ W	3-5 W	1-3 W
Sparsity	Light	Light	Moderate	Heavy
Precision	32f / 16f / 8i	32f / 16f / 8i	8i	1-8i
Accuracy	Great	Great	Moderate	Poor
Performance	High	High	Very Low	Very Low
Efficiency	25 pJ/MAC	2 pJ/MAC	10 pJ/MAC	5 pJ/MAC

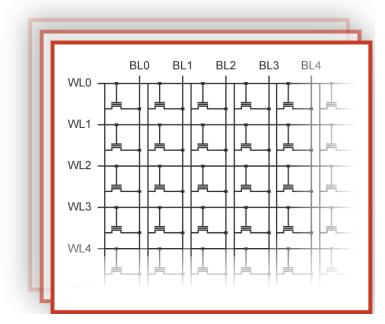
Mythic is Fundamentally Different

	Enterprise With DRAM	Enterprise No-DRAM	Edge With DRAM	Edge No-DRAM	Mythic NVM
SRAM	<50 MB	100+ MB	< 5 MB	< 5 MB	< 5 MB
DRAM	8+ GB	-	4-8 GB	-	-
Power	70+ W	70+ W	3-5 W	1-3 W	1-5 W
Sparsity	Light	Light	Moderate	Heavy	None
Precision	32f / 16f / 8i	32f / 16f / 8i	8i	1-8i	1-8i
Accuracy	Great	Great	Moderate	Poor	Great
Performance	High	High	Very Low	Very Low	High
Efficiency	25 pJ/MAC	2 pJ/MAC	10 pJ/MAC	5 pJ/MAC	0.5 pJ/MAC

MYTHIC

Mythic is Fundamentally Different

	Enterprise With DRAM	Enterprise No-DRAM	Edge With DRAM	Edge No-DRAN	Mythic NVM
SRAM	<50 MB	100+ MB	< 5 MB	< 5 MB	< 5 MB
DRAM	8 <mark>+ GB</mark>	-	4-8 GB	-	-
Power	7 Also, Mythic does this in a 40nm				1-5 W
Sparsity	L process, compared to 7/10/16nm				None
Precision	32f / 16f / 8i	32f / 16f / 8i	8i	1-8i	1-8i
Accuracy	Great	Great	Moderate	Poor	Great
Performance	High	High	Very Low	Very Low	High
Efficiency	25 pJ/MAC	2 pJ/MAC	10 pJ/MAC	5 pJ/MAC	0.5 pJ/MAC

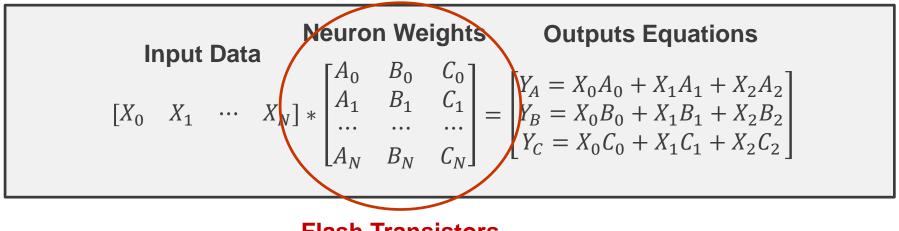

MYTHIC

Mythic's New Architecture Merges Enterprise and Edge

- Mythic introduces the Matrix Multiplying Memory
 - Never read weights
- This effectively makes weight memory access energy-free (only pay for MAC)
- And eliminates the need for...
 - Batch > 1

MYTHIC

- CNN Focus
- Sparsity or Compression
- Nerfed DNN Models



Made possible with Mixed-Signal Computing on embedded flash

© 2018 Mythic. All rights reserved.

Revisiting Matrix Multiply

Primary DNN Calculation is Input Vector * Weight Matrix = Output Vector

Flash Transistors

MYTHIC

© 2018 Mythic. All rights reserved.

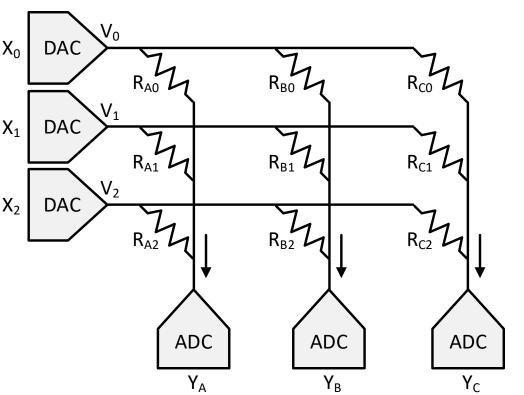
Analog Circuits Give us the MAC We Need

Flash transistors can be modeled as **variable resistors** representing the weight

The V=IR current equation will achieve the math we need:

Inputs (X) = DAC Weights (R) = Flash transistors Outputs (Y) = ADC Outputs

The ADCs convert current to digital codes, and provide the non-linearity needed for DNN

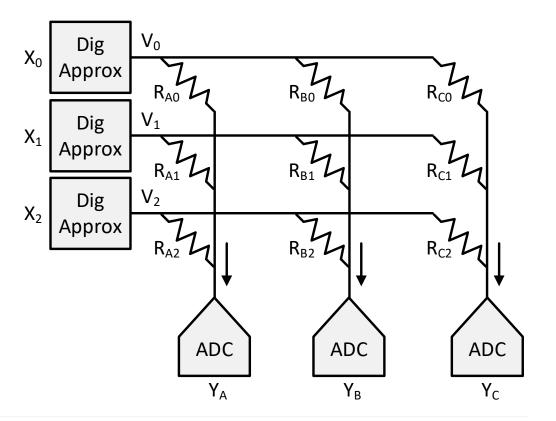

MYTHIC

ADC ADC ADC Y_B Y₄ Y_C

DACs & ADCs Give Us a Flexible Architecture

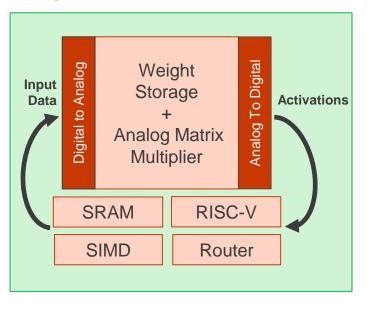
- We have a digital top-level architecture:
- Interconnect

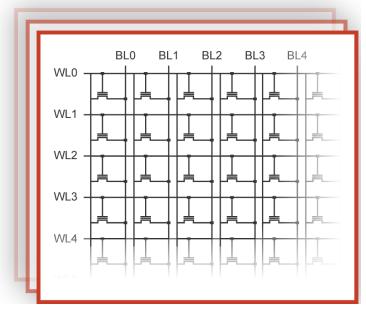
- Intermediate data storage
- Programmability (XLA/ONNX => Mythic IPU)



To Simplify we use Digital Approximation

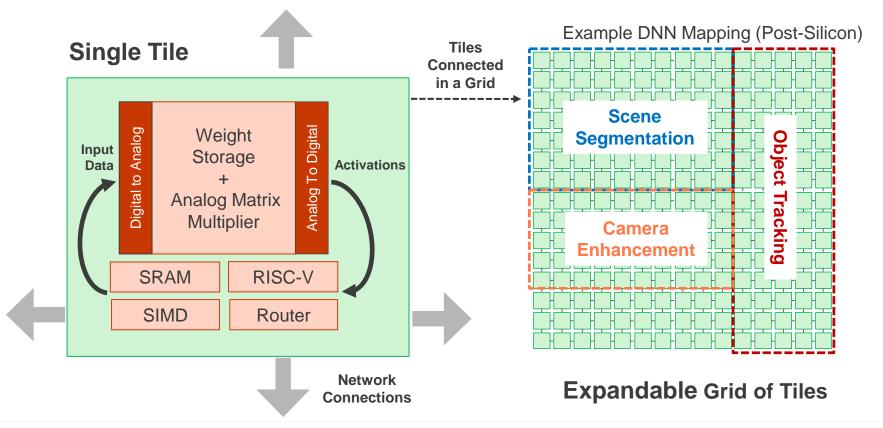
To improve time-to-market, we have left the Input DAC as a future endeavor


We achieve the same result through digital approximation


<u>Silver lining:</u> we have future improvements available

Mythic Mixed-Signal Computing

Single Tile



Made possible with Mixed-Signal Computing on embedded flash

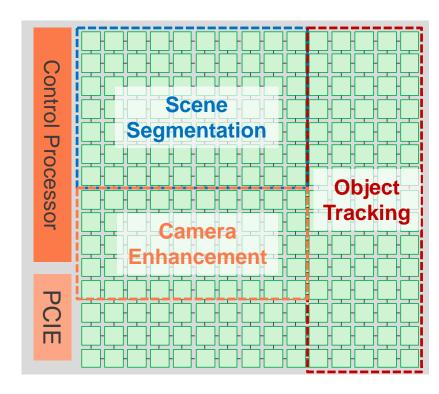
MYTHIC

Mythic Mixed-Signal Computing

MYTHIC

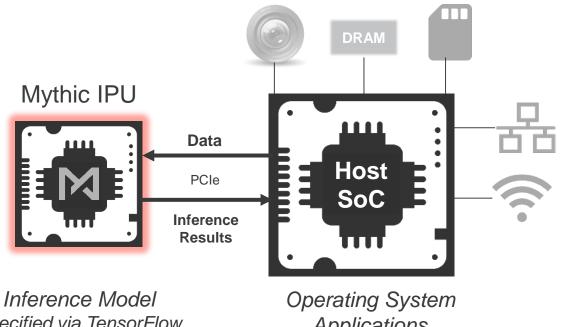
System Overview

Intelligence Processing Unit (IPU)

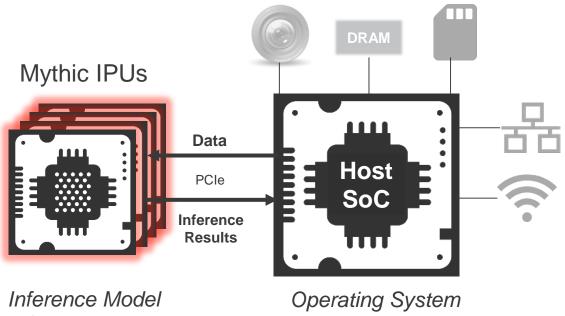

Initial Product

- 50M weight capacity
- PCle 2.1 x4
- Basic Control Processor

Envisioned Customizations (Gen 1)


- Up to 250M weight capacity
- PCle 2.1 x16
- USB 3.0/2.0

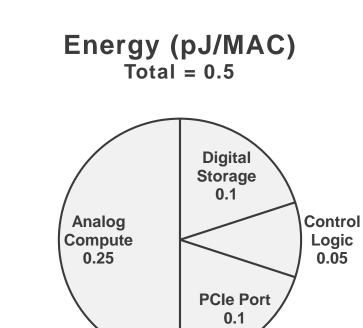
- Direct Audio/Video Interfaces
- Enhanced Control Processor (e.g., ARM)



Mythic is a PCIe Accelerator

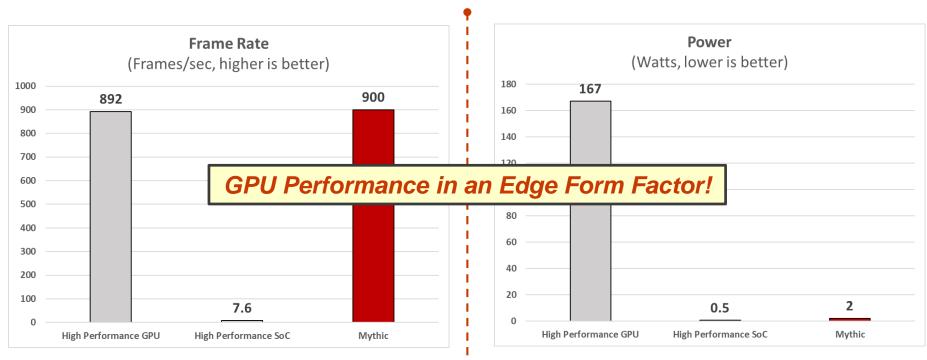
Inference Model (specified via TensorFlow, Caffe2, or others) Operating System Applications Interfaces Mythic IPU Driver

We Also Support Multiple IPUs

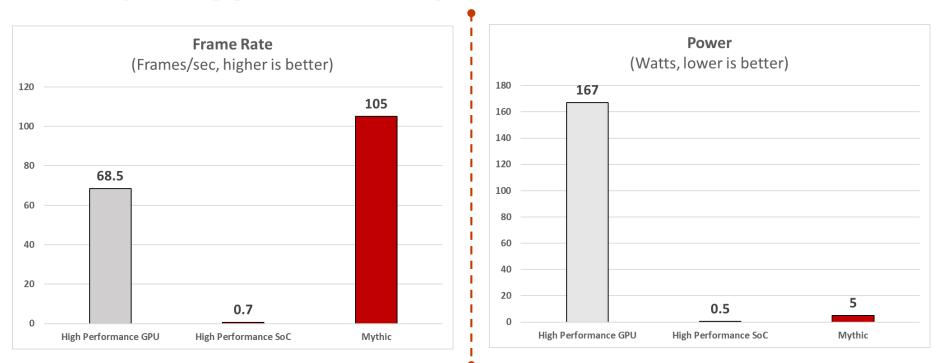

Inference Model (specified via TensorFlow, Caffe2, or others) Operating System Applications Interfaces Mythic IPU Driver

MYTHIC

We Account For All Energy Consumed


- Numbers are for a typical application, e.g. ResNet-50
 - Batch size = 1

- We are relatively applicationagnostic (especially compared to DRAM-based systems)
- 8b analog compute accounts for about half of our energy
 - We can also run lower precision
 - Control, storage, and PCIe accounts for the other half



Example Application: ResNet-50

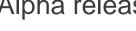
Running at 224x224 resolution. Mythic estimated, GPU/SoC measured

Example Application: OpenPose

Running at 656x368 resolution. Mythic estimated, GPU/SoC measured

MYTHIC

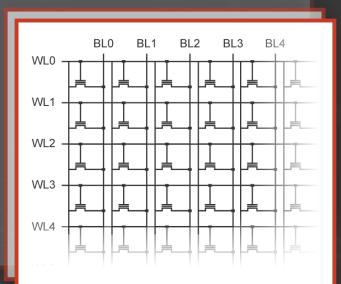
- BGA Chips
- PCIe Cards (1, 4, 16 IPUs)


External samples: Mid 2019

Four IPU PCIe card

Alpha release of software tools and profiler: Late 2018

Timeline



Mythic IPU Overview

- Low Latency
 - Runs batch size = 1
 - E.g., single frame delay
- High Performance
 - 10's of TMAC/s
- High Efficiency
 - 0.5 pJ/MAC aka 500mW / TMAC
- Hyper-Scalable
 - Ultra low power to high performance
- Easy to use
 - Topology agnostic (CNN/DNN/RNN)
 - TensorFlow/Caffe2/etc supported

Made possible with Mixed-Signal Computing on embedded flash

27

Questions?

© 2018 Mythic. All rights reserved.