

Scott Johnson Dominic Rizzo Parthasarathy Ranganathan Jon McCune Richard Ho

1

Titan: enabling a transparent silicon root of trust for Cloud

Google Cloud

Talk outline

Motivation and problem statement

01

02

System View and Integration 03

Chip Architecture 04

Feature Deep Dives 05

Building a community: Open Titan?

Motivation and architecture

The problem:

Example 1: How do we know it is our equipment?

Solution: Tag and verify every device

Example 2: Can we trust our boot chain?

BETRAYING THE BIOS:

WHERE THE GUARDIANS OF THE BIOS ARE FAILING

Solution: Sign and verify all boot code

BETRAYING THE BIOS : WHERE THE GUARDIANS OF THE BIOS ARE FAILING

Conclusion: We need a silicon root of trust

should be securely identifiable: cryptographic attestation

The first code executed should be trusted: cryptographically signed and verified firmware, live monitored for protection

in a tamper resistant manner

Chip Requirements

System View and Integration

Chip architecture

What is Titan?

- Secure low-power microcontroller designed with cloud security as first-class consideration
- Not just a chip, but the supporting system and security architecture + manufacturing flow

Why make our own?

Implementation transparency

Complete ownership, auditability, build local expertise

Agility & velocity

Technology changes, new risk vectors arrive

No existing solutions

Vendor-agnosticity, custom features

Glossary: a quick security chip primer

AES	Symmetric (shared-key) crypto algorithm
alert	Security critical event
BIST	Built in self test
BL	Boot loader
СА	Certificate authority
device state	Temporal state in life cycle of device (test, production, return for test, end of life)
EC	Elliptic curve: modern crypto algorithm
HMAC	Hash message authentication code
I2C	Two-pin low-speed peripheral interface
key mgr	Management of key and secret storage

NMI	Non-maskable interrupt
ОТР	One-time programmable (fuse) memory
PCH	Intel Platform Controller Hub
PMU	Power Management Unit
RC	Resistor/capacitor clock circuit
RSA	Circa 1980s crypto algorithm
RTC	Real Time Clock
SHA	Hashing algorithm
SPI	4+ pin peripheral interface
TRNG	True random number generator

Titan specifications

Titan specifications

Titan specifications

Feature Deep Dives

Verified Boot

Verified boot within Titan

- Each stage verifies the next
- Earlier stages do security settings, lock out further access
- Permission levels drop at each stage, protecting critical control points
- Splitting flash code into banks allows two copies: live-updatable
- Code signing taken seriously; multiple key holders, offline logs, playbooks

- 1. Test logic (LBIST) and ROM (MBIST); if fail \Rightarrow stay in reset; else jump to ROM
- 2. Compare bootloader (BL) versions A + B; choose most recent
- 3. Verify BL signature; if fail, retry with other BL; if fail, freeze
- 4. Compare firmware application (FW) versions A + B; choose most recent
- 5. Verify FW signature; if fail, retry with other FW; if fail, freeze
- 6. Execute successfully verified FW

Trusted identity

Trusted chip identity

Key manager creates chip identity key

- Dedicated hardware execution
- Processor walks FSM commands
- Keys inaccessible to processor
- Identity = crypto_hash of partial secrets
 - Each comes from a different silicon technology
 - Requires attackers to defeat each
- Export enabled if FSM complete
- Export disabled after manufacture

Trusted identity (registration)

- Personalization firmware loaded
- Chip creates identity message
- Identity exported to registry via secure channel

- Identities signed by offline certificate authority
- Certificate available for installation
- Identity available for later query

Life cycle tracking using OTP Fuses

- After manufacturing, must continue to guarantee authenticity
- Define six stages, and what is enabled in each stage
 Raw: no features enabled, deters wafer theft
 Test: enable test features only, no production features
 Development: enable production-level features for lab bringup
 Production: final production features, no testability, unique keys
 RMA (return for test): re-enable testability, no more production
 RIP: after RMA or mfg failure, permanently disable device
- Burnable fuses track life cycle from manufacturing to production
- Each stage transition a one-way street

Life cycle tracking using OTP Fuses

First instruction integrity

First instruction integrity

- Titan interposes on SPI, between host and system firmware Flash
- At system reset, does signature check of FW
 - Signature OK \Rightarrow enables system
 - \circ Signature fail \Rightarrow alerts of failure
- Live monitoring
 - Snoops SPI for illegal activity
 - Unauthorized actions converted to harmless commands

SPI interposition

The challenges of SPI interposition

- Vendor agnostic requires flexibility
- SPI does not have flow control
- Passthrough latency must be minimized
- Chip & board timing a challenge
- Can affect boot latency

Physical and tamper-resistant security

Physical security & countermeasures

Anti-glitch / anti-tamper mechanisms

- Attack detection (glitch, laser, thermal, voltage)
- Fuse, key storage, clock, and memory integrity checks
- Memory and bus scrambling and protection
- Register and memory-range address protection and locking
- TRNG entropy monitoring
- Boot-time and live-status checks

Physical security & countermeasures

Open Titan

Moving from Titan to Open Titan

Thesis

The functional security mechanisms, provenance and digital implementation are commodities and thus good candidates for open sourcing

Evidence

Credible open ISAs, our RTL repositories, standard crypto primitives

Outcome

An open, transparent implementation of a secure cloud root of trust

What would Open Titan look like?

What would Open Titan look like?

What would Open Titan look like?

Silicon Transparency Working Group

ETH zürich

Questions

For additional information https://cloudplatform.googleblog.co m/2017/08/Titan-in-depth-security-in -plaintext.html

That's a wrap

Google Cloud